当瞬时应力达到某个位置材料抗拉强度时, 认为材料发生热震损伤。
参考文献
[1] Shiota I, Miyamoto Y. Functionally Graded Materials 1996.
Amsterdam: Elsevier Science B V, 1997
[2] 黄敬东, 吴俊, 王银平. 梯度功能材料的研究评述. 材料保护, 2002, 351: 8-9
[3] Suresh S, Mortensen A. 功能梯度材料基础-制备及热机械行为. 北京: 国防工业出版社,
2000
[4] 贾贤. 天然生物材料及其仿生工程材料. 北京: 化学工业出版社, 2007
[5] 崔福斋, 郑传林. 仿生材料. 北京: 化学工业出版社, 2004
[6] Weiner S, Wagner H D. The material bone: structure-mechanical
function relations. Annual Review of Materials Science, 1998,
281: 271-298
[7] Gupta H S, Zioupos P. Fracture of bone tissue: the ‘hows’ and
the ‘whys’. Medical Engineering Physics, 2008, 30:
1209-1226
[8] Low I M, Duraman N, Mahmood U. Mapping the structure,
composition and mechanical properties of human teeth. Materials
Science Engineering C, 2008, 28: 243-247
[9] Roy S, Basu B. Mechanical and tribological characterization of
human tooth. Materials Characterization, 2008, 59: 747-756
[10] Igarashi T, Nishino K, Nayar S K. The appearance of human
skin: a survey. Foundations and Trends in Computer Graphics and
Vision, 2007, 31: 1-95
[11] Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of
the elastic mechanical properties of human skin by indentation
tests. Medical Engineering and Physics, 2008, 30: 599-606
[12] Kwiatkowska M, Franklin S E, Hendriks C P, Kwiatkowski K.
Friction and deformation behaviour of human skin. Wear, 2009, 267:
1264-1273
[13] Hou D F, Zhou G S, Zheng M. Conch shell structure and its
effect on mechanical behaviors. Biomaterials, 2004, 25:
751-756
[14] 周玉. 陶瓷材料学. 北京: 科学出版社, 2004
[15] Cortie M B, McBean K E, Elcombe M M. Fracture mechanics of
mollusc shells. Physica B: Condensed Matter, 2006, 385-386 I:
545-547
[16] Ghavami K. Ultimate load behaviour of bamboo-reinforced
lightweight concrete beams. Cement and Concrete Composites, 1995,
174: 281-288
[17] Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Zhifei
Y. Mechanical structures of bamboos in viewpoint of functionally
gradient and composite materials. Journal of Composite Materials,
1996, 30: 800-819
[18] Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H. Fiber
texture and mechanical graded structure of bamboo. Composites Part
B: Engineering, 1997, 281-2: 13-20
[19] Lo T Y, Cui H Z, Leung H C. The effect of fiber density on
strength capacity of bamboo. Materials Letters, 2004, 58:
2595-2598
[20] Ray A K, Mondal S, Das S K, Ramachandrarao P. Bamboo-a
functionally graded composite-correlation between microstructure
and mechanical strength. Journal of Materials Science, 2005, 40:
5249-5253
[21] 师昌绪, 李恒德, 周廉. 材料科学与工程手册下. 北京: 化学工业出版社, 2003
[22] 施罗特尔 W. 半导体的电子结构与性能. 材料科学与技术丛书. 卡恩 R W, 哈森 P, 克雷默 E J. 北京:
科学出版社, 2001
[23] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. An
investigation of surface nanocrystallization mechanism in Fe
induced by surface mechanical attrition treatment. Acta Materialia,
2002, 50: 4603-4016
[24] Lu K, Lu J. Nanostructured surface layer on metallic materials
induced by surface mechanical attrition treatment. Materials
Science and Engineering A, 2004, 375-377: 38-45
[25] 陈振华. 现代粉末冶金技术. 北京: 化学工业出版社, 2007
[26] 黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1997
[27] 果世驹. 粉末烧结理论. 北京: 冶金工业出版社, 1998
[28] Laeng J, Stewart J G, Liou F W. Laser metal forming processes
for rapid prototyping-a review. International Journal of Production
Research, 2000, 38: 3973-3996
[29] Santos E C, Shiomi M, Osakada K, Laoui T. Rapid manufacturing
of metal components by laser forming. International Journal of
Machine Tools Manufacture, 2006, 46: 1459-1468
[30] Zhang K, Liu W J, Shang X F. Research on the processing
experiments of laser metal deposition shaping. Optics and Laser
Technology, 2007, 39: 549-557
[31] 王海军. 热喷涂实用技术. 北京: 国防工业出版社, 2006
[32] Askeland D R, Phule P P. 国外大学优秀教材-材料科学与工程系列, 材料科学与工程基础. 北京:
清华大学出版社, 2005
[33] Gu P, Asaro R J. Cracks in functionally graded materials.
International Journal of Solids and Structures, 1997, 341:
1-17
[34] Tohgo K, Iizuka M, Araki H, Shimamura Y. Influence of
microstructure on fracture toughness distribution in ceramic-metal
functionally graded materials. Engineering Fracture Mechanics,
2008, 7515: 4529-4541
[35] Wessel J K. Handbook of Advanced Materials. New Jersey: John
Wiley Sons, Inc, 2004
[36] Kawasaki A, Watanabe R. Thermal fracture behavior of
metalceramic functionally graded materials. Engineering Fracture
Mechanics, 2002, 6914-16: 1713-1728
[37] Zhong Z, Cheng Z Q. Fracture analysis of a functionally graded
strip with arbitrary distributed material properties. International
Journal of Solids and Structures, 2008, 4513: 3711-3725
[38] Jin Z H, Batra R C. Some basic fracture mechanics concepts in
functionally graded materials. Journal of the Mechanics and Physics
of Solids, 1996, 448: 1221-1235
[39] 宋世学, 吴齐, 艾兴, 赵军. 基于高抗热震性能的陶瓷刀具材料的微观结构设计. 材料科学与工程学报, 2003,
213: 402-405
[40] Hasselman D P H. Unified Theory of thermal shock fracture
initiation and crack propagation in brittle ceramics. Journal of
the American Ceramic Society, 1969, 5211: 600-604
[41] 王吉会, 郑俊萍, 刘家臣, 黄定海. 材料力学性能. 天津: 天津大学出版社, 2006
[42] Han J C, Wang B L. Thermal shock resistance enhancement of
functionally graded materials by multiple cracking. Acta
Materialia, 2006, 544: 963-973
[43] Wang B L, Mai Y W, Zhang X H. Thermal shock resistance of
functionally graded materials. Acta Materialia, 2004, 5217:
4961-4972
第2章 宏观梯度结构硬质合金
2.1 硬质合金概论
硬质合金是一种以难熔金属化合物WC、 TaC、 TiC、 NbC等为基体, 以过渡族金属Co、 Fe和Ni为黏结相,
采用粉末冶金方法制备的金属陶瓷工具材料。由于其高强度、 高硬度、 高弹性模量、 耐磨损、 耐腐蚀、热膨胀系数小以及化学性质稳定等优点,
在金属切削工具、 木材切削工具、 石油矿山钻具、 复合材料加工工具、
冷成形工具、耐磨零件和热轧轧辊等方面有着重要的应用。典型的WC-Co硬质合金的显微组织如图2-1所示。图中白色不规则相为WC,
深色、分布在WC相之间的为Co相。