登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

『簡體書』解析数论导论

書城自編碼: 1876989
分類: 簡體書→大陸圖書→自然科學數學
作 者: [美]阿波斯托尔
國際書號(ISBN): 9787510040627
出版社: 世界图书出版公司
出版日期: 2012-01-01
版次: 1 印次: 1
頁數/字數: 339/
書度/開本: 24开 釘裝: 平装

售價:NT$ 428

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
教育何用:重估教育的价值
《 教育何用:重估教育的价值 》

售價:NT$ 299.0
理想城市:环境与诗性
《 理想城市:环境与诗性 》

售價:NT$ 390.0
大模型推荐系统:算法原理、代码实战与案例分析
《 大模型推荐系统:算法原理、代码实战与案例分析 》

售價:NT$ 445.0
逆风翻盘  危机时代的亿万赢家 在充满危机与风险的世界里,学会与之共舞并找到致富与生存之道
《 逆风翻盘 危机时代的亿万赢家 在充满危机与风险的世界里,学会与之共舞并找到致富与生存之道 》

售價:NT$ 625.0
工业互联网导论
《 工业互联网导论 》

售價:NT$ 445.0
木偶的恨意(法国悬念大师米歇尔普西悬疑新作)
《 木偶的恨意(法国悬念大师米歇尔普西悬疑新作) 》

售價:NT$ 295.0
孤独传:一种现代情感的历史
《 孤独传:一种现代情感的历史 》

售價:NT$ 390.0
家、金钱和孩子
《 家、金钱和孩子 》

售價:NT$ 295.0

建議一齊購買:

+

NT$ 490
《 椭圆曲线的有理点 》
+

NT$ 801
《 模形式与费马大定理 》
+

NT$ 351
《 类域论 》
內容簡介:
《解析数论导论英文版》是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去第一章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)一定的了解。
目錄
historical introduction
chapter 1 the fundamental theorem of arithmetic
 1.1 introduction
 1.2 divisibility
 1.3 greatest common divisor
 1.4 prime numbers
 1.5 the fundamental theorem of arithmetic
 1.6 the series of reciprocals of the primes
 1.7 the euclidean algorithm
 1.8 the greatest common divisor of more than two numbers
 exercises for chapter !
chapter 2 arithmetical functions and dirichlet multiplication
 2.1 introduction
 2.2 the mebius function mn
 2.3 the euler totient function 0n
 2.4 a relation connecting 0 and it
 2.5 a product formula for n
 2.6 the dirichlet product of arithmetical functions
 2.7 dirichlet inverses and the mebius inversion formula
 2.8 the mangoidt function an
 2.9 multiplicativefunctions
 2.10 multiplicative functions and dirichlet multiplication
 2.11 the inverse of a completely multiplicative function
 2.12 liouville''s function ..
 2.13 the divisor functions a,n
 2.14 generalized convolutions
 2.15 formal power series
 2.16 the bell series of an arithmetical function
 2.17 bell series and dirichlet multiplication
 2.18 derivatives of arithmetical functions
 2.19 the selberg identity
 exercises for chapter 2
chapter 3 averages of arithmetical functions
 3.1 introduction
 3.2 the big oh notation. asymptotic equality of functions
 3.3 euler''s summation formula
 3.4 some elementary asymptotic formulas
 3.5 the average order old{n}
 3.6 the average order of the divisor functions a,n
 3.7 the average order ofn
 3.8 an application to the distribution of lattice points visible
from the origin
 3.9 the average order of un and of an
 3.10 the partial sums ora dirichlet product
 3.11 applications to #n and an
 3.12 another identity for the partial sums of a dirichlet
product
 exercises for chapter 3
chapter 4 some elementary theorems on the distribution of
prime
 numbers
 4.1 introduction
 4.2 chebyshev''s functions x and ,9x
 4.3 relations connecting x and rix
 4.4 some equivalent forms of the prime number theorem
 4.5 inequalities for rin and pn
 4.6 shapiro''s tauberian theorem
 4.7 applications of shapiro''s theorem
 4.8 an asymptotic formula for the partial sums σpsx ip
 4.9 the partial sums of the m6bius function
 4.10 brief sketch of an elementary proof of the prime number
theorem
 4.11 selberg''s asymptotic formula
 exercises for chapter 4 lot
chapter 5 congruences
 5.1 definition and basic properties of congruences
 5.2 residue classes and complete residue systems
 5.3 linear congruences
 5.4 reduced residue systems and the euler-fermat theorem il
 5.5 polynomial congruences modulo p. lagrange''s theorem
 5.6 applications of lagrange''s theorem
 5.7 simultaneous linear congruences. the chinese remainder theorem
l !
 5.8 applications of the chinese remainder theorem il
 5.9 polynomial congruences with prime power moduli
 5.10 the principle of cross-classification
 5.11 a decomposition property of reduced residue systems
 exercises for chapter 5
chapter 6 finite abelian groups and their characters
 6.1 definitions
 6.2 examples of groups and subgroups
 6.3 elementary properties of groups
 6.4 construction of subgroups
 6.5 characters of finite abelian groups
 6.6 the character group
 6.7 the orthogonality relations for characters
 6.8 dirichlet characters
 6.9 sums involving dirichlet characters
 6.10 the nonvanishing of li, x for real nonprincipal x l#l
 exercises for chapter 6
chapter 7 dirichlet''s theorem on primes in arithmetic
progressions
 7.1 introduction
 7.2 dirichlet''s theorem for primes of the form 4n - i and 4n +
i
 7.3 the plan of the proof of dirichlet''s theorem
 7.4 proof of lemma 7.4
 7.5 proof of lemma 7.5
 7.6 proof of lemma 7.6
 7.7 proof of lemma 7.8
 7.8 proof of lemma 7.7
 7.9 distribution of primes in arithmetic progressions
 exercises for chapter 7
chapter 8 periodic arithmetical functions and gauss sums
 8.1 functions periodic modulo k
 8.2 existence of finite fourier series for periodic arithmetical
functions
 8.3 ramanujan''s sum and generalizations
 8.4 multiplicative properties of the sums skn
 8.5 gauss sums associated with dirichlet characters
 8.6 dirichlet characters with nonvanishing gauss sums
 8.7 induced moduli and primitive characters
 8.8 further properties of induced moduli
 8.9 the conductor of a character
 8.10 primitive characters and separable gauss sums
 8.11 the finite fourier series of the dirichlet characters
 8.12 p61ya''s inequality for the partial sums of primitive
characters
 exercises for chapter 8
chapter 9 quadratic residues and the quadratic reciprocity
law
 9.1 quadratic residues
 9.2 legendre''s symbol and its properties
 9.3 evaluation of- lip and 2]p
 9.4 gauss'' lemma
 9.5 the quadratic reciprocity law
 9.6 applications of the reciprocity law
 9.7 the jacobi symbol
 9.8 applications to diophantine equations
 9.9 gauss sums and the quadratic reciprocity law
 9.10 the reciprocity law for quadratic gauss sums
 9.11 another proof of the quadratic reciprocity law
 exercisesfor chapter 9
chapter 10 primitive roots
 10.1 the exponent ora number mod m. primitive roots
 10.2 primitive roots and reduced residue systems
 10.3 the nonexistence of primitive roots mod 2'' for a ] 3
 10.4 the existence of primitive roots mod p for odd primes p
 10.5 primitive roots and quadratic residues
 10.6 the existence of primitive roots mod p
 10.7 the existence of primitive roots mod 2p
 10.8 the nonexistence of primitive roots in the remaining
cases
 10.9 the number of primitive roots mod m
 10.10 the index calculus
 10.11 primitive roots and dirichlet characters
 10.12 real-valued dirichlet characters mod p
 10.13 primitive dirichlet characters mod p
 exercises for chapter 10
chapter 11 dirichlet series and euler products
 11.1 introduction
 11.2 the half-plane of absolute convergence of a dirichlet
series
 11.3 the function defined by a dirichlet series
 11.4 multiplication of dirichlet series
 11.5 euler products
 11.6 the half-plane of convergence of a dirichlet series
 11.7 analytic properties of dirichlet series
 11.8 dirichlet series with nonnegative coefficients
 11.9 dirichlet series expressed as exponentials of dirichlet
series
 11.10 mean value formulas for dirichlet series
 11.11 an integral formula for the coefficients of a dirichlet
series
 11.12 an integral formula for the partial sums ora dirichlet
series
 exercises for chapter ii
chapter 12 the functions ζs and ls, x
 12.1 introduction
 12.2 properties of the gamma function
 12.3 lntegrai representation for the hurwitz zeta function
 12.4 a contour integral representation for the hurwitz zeta
function
 12.5 the analytic continuation of the hurwitz zeta function
 12.6 analytic continuation of ζs and ls, x
 12.7 hurwitz''s formula for ζs, a
 12.8 the functional equation for the riemann zeta function
 12.9 a functional equation for the hurwitz zeta function
 12.10 the functional equation for l-functions
 12.11 evaluation of ζ-n, a
 12.12 properties of bernoulli numbers and bernoulli
polynomials
 12.13 formulas for l0, z
 12.14 approximation of ζs, a by finite sums
 12.15 inequalities for iζs, al
 12.16 inequalities for iζsl and ils, xl
 exercises for chapter 12
chapter 13 analytic proof of the prime number theorem
 13.1 theplan of the proof
 13.2 lemmas
 13.3 a contour integral representation for ψxx2
 13.4 upper bounds for ┃ζs┃and iζ''s[ near the line a =1
 13.5 the nonvanishing of ζs on the line a =1
 13.6 inequalities for ┃1ζs and ┃ζ''sζs┃
 13.7 completion of the proof of the prime number theorem
 13.8 zero-free regions for ζs
 13.9 the riemann hypothesis
 13.10 application to the divisor functi6n
 13.11 application to euler''s totient
 13.12 extension of pe1ya''s inequality for character sums
 exercises for chapter 13
chapter 14 partitions
 14.1 introduction
 14.2 geometric representation of partitions
 14.3 generating functions for partitions
 14.4 euler''s pentagonal-number theorem
 14.5 combinatorial proof of euler''s pentagonal-number
theorem
 14.6 euler''s recursion formula for pn
 14.7 an upper bound for pn
 14.8 jacobi''s triple product identity
 14.9 consequences of jacobi''s identity
 14.10 logarithmic differentiation of generating functions
 14.11 the partition identities of ramanujan
 exercises for chapter 14
bibliography
index of special symbols
index
 

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.