登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

『簡體書』应用时间序列分析·R软件陪同(具有浓郁统计学味道的时间序列分析教材,没有复杂的数学证明过程。是系统学习时间序列分析方法及其应用的首选之作)

書城自編碼: 2420085
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作 者: 吴喜之,刘苗 编著
國際書號(ISBN): 9787111468165
出版社: 机械工业出版社
出版日期: 2014-07-01
版次: 1 印次: 1
頁數/字數: 175/
書度/開本: 16开 釘裝: 平装

售價:NT$ 351

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
无法忍受谎言的人:一个调查记者的三十年
《 无法忍受谎言的人:一个调查记者的三十年 》

售價:NT$ 290.0
战争社会学专论
《 战争社会学专论 》

售價:NT$ 540.0
剑桥意大利戏剧史(剑桥世界戏剧史译丛)
《 剑桥意大利戏剧史(剑桥世界戏剧史译丛) 》

售價:NT$ 740.0
教育何用:重估教育的价值
《 教育何用:重估教育的价值 》

售價:NT$ 299.0
理想城市:环境与诗性
《 理想城市:环境与诗性 》

售價:NT$ 390.0
大模型推荐系统:算法原理、代码实战与案例分析
《 大模型推荐系统:算法原理、代码实战与案例分析 》

售價:NT$ 445.0
逆风翻盘  危机时代的亿万赢家 在充满危机与风险的世界里,学会与之共舞并找到致富与生存之道
《 逆风翻盘 危机时代的亿万赢家 在充满危机与风险的世界里,学会与之共舞并找到致富与生存之道 》

售價:NT$ 625.0
工业互联网导论
《 工业互联网导论 》

售價:NT$ 445.0

建議一齊購買:

+

NT$ 1210
《 深度学习 》
+

NT$ 353
《 量化金融R语言初级教程 》
+

NT$ 425
《 预测分析:R语言实现 》
+

NT$ 593
《 预测分析建模:Python与R语言实现 》
+

NT$ 593
《 多元时间序列分析及金融应用:R语言 》
+

NT$ 368
《 R包开发 》
內容簡介:
由吴喜之、刘苗编著的《应用时间序列分析R软 件陪同》通过案例讲述有关的概念和方法,不仅介 绍了ARMA模型、状态空间模型、Kalman滤波、单位根 检验和GARCH奠型等一元时间序列方法,还介绍了很 多最新的多元时间序列方法,如线性协整、门限协整 、VAR模型、Granger因果检验、神经网络模型、可加 AR模型和谱估计等,书中强调对真实的时间序列数据 进行分析,全程使用R软件分析了各个科学领域的实 际数据,还分析了金融和经济数据的例子。
本书通俗易懂,理论与应用并重,可作为高等院 校统计学和经济管理等专业“时间序列分析”相关课 程的教材,对金融和互联网等领域的相关从业者也极 具参考价值。
目錄
前言
第1章 引言
 1.1 时间序列的特点
 1.2 时间序列例子
 1.3 R软件入门
1.3.1 简介
1.3.2 动手
 1.4 本书的内容
 1.5 习题
第2章 一元时间序列的基本概念和模型
 2.1 时间序列的平稳性及相关性度量
2.1.1 平稳、自协方差函数和自相关函数
2.1.2 差分算子和后移算子
 2.2 白噪声
 2.3 随机游走
 2.4 趋势平稳过程
 2.5 一般线性模型
 2.6 MA模型
 2.7 AR模型
 2.8 ARMA模型
 2.9 ARIMA模型
 2.10 季节模型
 2.11 习题
第3章 一元时间序列数据的拟合及预测
 3.1 一些估计和预测方法的基本数学原理
3.1.1 ARMA模型的最大似然估计
3.1.2 ARMA模型的矩估计方法
3.1.3 预测的基本目的
3.1.4 简单指数平滑
3.1.5 Holt—Winters滤波预测方法
3.1.6 ARMA模型预测的基本数学原理
 3.2 一元时间序列数据实例分析
3.2.1 差分、平滑和时间序列的分解
3.2.2 ARMA模型和ARIMA模型
3.2.3 例1.2中Auckland降水序列的综合分析
 3.3 习题
第4章 状态空间模型和Kalman滤波简介
 4.1 动机
 4.2 结构时间序列模型
4.2.1 局部水平模型
4.2.2 局部线性趋势模型
4.2.3 季节效应
 4.3 一般状态空间模型
4.3.1 随时间变化系数的回归
4.3.2 ARMA模型的状态空间模型形式
4.3.3 结构时间序列的一般状态空间模型表示
 4.4 Kalman滤波
 4.5 状态空间数据例子
4.5.1 一元局部水平模型例子
4.5.2 二元局部水平模型Kalman滤波例子
4.5.3 包含季节因素的局部水平多元模型Kalman滤波例子
第5章 单位根检验
 5.1 单整和单位根
 5.2 单位根检验
5.2.1 DF检验、ADF检验以及PP检验
5.2.2 KPSS检验
第6章 长期记忆过程:ARFIMA模型术
 6.1 介于J0及J1之间的长期记忆序列
 6.2 ARFIMA过程
 6.3 ARFIMA模型拟合例3.4尼罗河流量数据
第7章 GARCH模型
 7.1 时间序列的波动
 7.2 模型的描述
 7.3 数据的拟合
7.3.1 例7.1数据的拟合
7.3.2 例7.2数据的拟合
 7.4 GARCH模型的延伸
7.4.1 一组GARCH模型
7.4.2 FGARCH模型族
7.4.3 ARFIMA—GARCH模型族拟合例7.2数据
第8章 多元时间序列的基本概念和模型
 8.1 平稳性
 8.2 交叉协方差矩阵和相关矩阵
 8.3 一般线性模型
 8.4 VARMA模型
 8.5 协整模型和Granger因果检验
8.5.1 VECM和协整
8.5.2 协整检验
8.5.3 Granger因果检验
第9章 多元时间序列数据的拟合及预测
 9.1 例9.1数据的协整检验和Granger因果检验
9.1.1 Johansen协整检验
9.1.2 Engle—Granger协整检验
9.1.3 Pillips—Ouliaris协整检验
9.1.4 例9.1数据的Granger因果检验
 9.2 用VAR、VARX及状态空间模型拟合例9.1数据
9.2.1 用VAR拟合及预测例9.1数据
9.2.2 用VARX模型拟合及预测例9.1数据
9.2.3 用状态空间模型拟合及预测例9.1数据
 9.3 习题
第10章 非线性时间序列
 10.1 非线性例子
 10.2 线性AR模型
 10.3 自门限自回归模型
10.3.1 一个门限参数的模型
10.3.2 两个门限参数的模型
10.3.3 Hansen检验
 10.4 Logistic平滑过渡自回归模型
 10.5 神经网络模型
 10.6 可加AR模型
 10.7 模型的比较
 10.8 门限协整
10.8.1 向量误差修正模型
10.8.2 向量误差修正模型的估计
10.8.3 向量误差修正模型的检验
第11章 谱分析简介
 11.1 周期性时间序列
 11.2 谱密度
 11.3 谱分布函数
 11.4 自相关母函数和谱密度
 11.5 时不变线性滤波器
 11.6 谱估计
11.6.1 通过样本自协方差函数估计谱密度
11.6.2 通过周期图估计谱密度
11.6.3 非参数谱密度估计
11.6.4 参数谱密度估计
附录 使用R软件练习
参考文献

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.