登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』随机动力系统导论(英文)

書城自編碼: 2571785
分類: 簡體書→大陸圖書→自然科學數學
作 者: 段金桥 著
國際書號(ISBN): 9787030438577
出版社: 科学出版社
出版日期: 2015-04-01
版次: 1 印次: 1
頁數/字數: 300/373000
書度/開本: 16开 釘裝: 精装

售價:NT$ 1062

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
可转债——新手理财的极简工具
《 可转债——新手理财的极简工具 》

售價:NT$ 296.0
新加坡教育:神话与现实
《 新加坡教育:神话与现实 》

售價:NT$ 439.0
“口袋中的世界史”第一辑·冷战中的危机事件
《 “口袋中的世界史”第一辑·冷战中的危机事件 》

售價:NT$ 1326.0
绝美的奥伦堡蕾丝披肩编织
《 绝美的奥伦堡蕾丝披肩编织 》

售價:NT$ 806.0
狂飙年代:18世纪俄国的新文化和旧文化(第二卷)
《 狂飙年代:18世纪俄国的新文化和旧文化(第二卷) 》

售價:NT$ 806.0
万有引力书系 纳粹亿万富翁 德国财富家族的黑暗历史
《 万有引力书系 纳粹亿万富翁 德国财富家族的黑暗历史 》

售價:NT$ 500.0
中国常见植物野外识别手册:青海册
《 中国常见植物野外识别手册:青海册 》

售價:NT$ 347.0
三星堆对话古遗址(从三星堆出发,横跨黄河流域,长江流域,对话11处古遗址,探源多元一体的中华文明)
《 三星堆对话古遗址(从三星堆出发,横跨黄河流域,长江流域,对话11处古遗址,探源多元一体的中华文明) 》

售價:NT$ 398.0

建議一齊購買:

+

NT$ 324
《 最优化计算方法 》
+

NT$ 531
《 数学建模方法与分析(原书第4版) 》
+

NT$ 405
《 数学概观 》
+

NT$ 266
《 别莱利曼系列:趣味几何学 》
內容簡介:
随机动力系统是一个入门较难的新兴领域。段金 桥、杨乐编著的《随机动力系统导论英文版精 纯粹数学与应用数学专著》是这个领域的一个较为通 俗易懂的引论。在本书的第一部分,作者从简单的随 机动力系统实际例子出发,引导读者回顾概率论和白 噪声的基本知识,深入浅出地介绍随机微积分,然后 自然地展开随机微分方程的讨论。
目錄
Chapter 1 Introduction
 1.1 Examples of deterministic dynamical systems
 1.2 Examples of stochastic dynamical systems
 1.3 Mathematical modeling with stochastic differential equations
 1.4 Outline of this book
 1.5 Problems
Chapter 2 Background in Analysis and Probability
 2.1 Euclidean space
 2.2 Hilbert, Banach and metric spaces
 2.3 Taylor expansions
 2.4 Improper integrals and Cauchy principal values
 2.5 Some useful inequalities
2.5.1 Young''s inequality
2.5.2 Cronwall inequality
2.5.3 Cauchy-Schwaxz inequality
2.5.4 HSlder inequality
2.5.5 Minkowski inequality
 2.6 HSlder spaces, Sobolev spaces and related inequalities
 2.7 Probability spaces
2.7.1 Scalar random variables
2.7.2 Random vectors
2.7.3 Gaussian random variables
2.7.4 Non-Gaussian random variables
 2.8 Stochastic processes
 2.9 Coovergence concepts
 2.10 Simulation
 2.11 Problems
Chapter 3 Noise
 3.1 Brownian motion
3.1.1 Brownian motion in R1
3.1.2 Brownian motion in Rn~
 3.2 What is Gaussian white noise
 3.3* A mathematical model for Gaussian white noise
3.3.1 Generalized derivatives
3.3.2 Gaussian white noise
 3.4 Simulation
 3.5 Problems
Chapter 4 A Crash Course in Stochastic Differential Equations
 4.1 Differential equations with noise
 4.2 Riemann-Stieltjes integration
 4.3 Stochastic integration and stochastic differential equations
4.3.1 Motivation
4.3.2 Definition of It5 integral
4.3.3 Practical calculations
4.3.4 Stratonovich integral
4.3.5 Examples
4.3.6 Properties of It6 integrals
4.3.7 Stochastic differential equations
4.3.8 SDEs in engineering and science literature
4.3.9 SDEs with two-sided Brownian motions
 4.4 It6''s formula
4.4.1 Motivation for stochasticChain rules
4.4.2 ItS''s formula in scalar case
4.4.3 It6''s formula in vector case
4.4.4 Stochastic product rule and integration by parts
 4.5 Linear stochastic differential equations
 4.6 Nonlinear stochastic differential equations
4.6.1 Existence, uniqueness and smoothness
4.6.2 Probability measure px and expectation Ex associated with an SDE
 4.7 Conversion between It5 and Stratonovich stochastic differential
equations
4.7.1 Scalar SDEs
4.7.2 SDE systems
 4.8 Impact of noise on dynamics
 4.9 Simulation
 4.10 Problems
Chapter 5 Deterministic Quantities for Stochastic Dynamics
 5.1 Moments
 5.2 Probability density functions
5.2.1 Scalar Fokker-Planck equations
5.2.2 Multidimensional Fokker-Planck equations
5.2.3 Existence and uniqueness for Fokker-Planck equations
5.2.4 Likelihood for transitions between different dynamical regimes under
uncertainty
 5.3 Most probable phase portraits
5.3.1 Mean phase portraits
5.3.2 Almost sure phase portraits
5.3.3 Most probable phase portraits
5.4 Mean exit time
5.5 Escape probability
5.6 Problems
Chapter 6 Invariant Structures for Stochastic Dynamics
 6.1 Deterministic dynamical systems
6.1.1 Concepts for deterministic dynamical systems
6.1.2 The Haxtman-Grobman theorem
6.1.3 Invariant sets
6.1.4 Differentiable manifolds
6.1.5 Deterministic invariant manifolds
 6.2 Measurable dynamical systems
 6.3 Random dynamical systems
6.3.1 Canonical sample spaces for SDEs
6.3.2 Wiener shift
6.3.3 Cocycles and random dynamical systems
6.3.4 Examples of cocycles
6.3.5 Structural stability and stationary orbits
 6.4 Linear stochastic dynamics
6.4.1 Oseledets'' multiplicative ergodic theorem and Lyapunov exponents"
6.4.2 A stochastic Hartman-Grobman theorem
 6.5* Random invariant manifolds
6.5.1 Definition of random invariant manifolds
6.5.2 Converting SDEs to RDEs
6.5.3 Local random pseudo-stable and pseudo-unstable manifolds
6.5.4 Local random stable, unstable and center manifolds
 6.6 Problems
Chapter 7 Dynamical Systems Driven by Non-Gaussian Levy
 Motions
 7.1 Modeling via stochastic differential equations with Levy motions
 7.2 Levy motions
7.2.1 Functions that have one-side limits
7.2.2 Levy-Ito decomposition
7.2.3 Levy-Khintchine formula
7.2.4 Basic properties of Levy motions
 7.3 s-stable Levy motions
7.3.1 Stable random variables
7.3.2 a-stable Levy motions in R1
7.3.3 a-stable Levy motion in Rn
 7.4 Stochastic differential equations with Levy motions
7.4.1 Stochastic integration with respect to Levy motions
7.4.2 SDEs with Levy motions
7.4.3 Generators for SDEs with Levy motion
 7.5 Mean exit time
7.5.1 Mean exit time for a-stable Levy motion
7.5.2 Mean exit time for SDEs with a-stable Levy motion
 7.6 Escape probability and transition phenomena
7.6.1 Balayage-Dirichlet problem for escape probability
7.6.2 Escape probability for a-stable Levy motion
7.6.3 Escape probability for SDEs with a-stable Levy motion
 7.7 Fokker-Planck equations
7.7.1 Fokker-Planck equations in R1
7.7.2 Fokker-Planck equations in Rn
 7.8 Problems
Hints and Solutions
Further Readings
References
Index
Color Pictures
內容試閱
Chapter 1
Introduction
Noisy fluctuations are abundant in complex systems。 In some cases, noise is not negligible, whereas in some other situations, noise could even be beneficial。 It is desirable to have a better understanding of the impact of noise on dynamical evo?lution of complex systems。 In other words, it becomes crucial to take randomness into account in mathematical modeling of complex phenomena under uncertainty。
In 1908, Langevin devised a stochastic differential equation for the motion of Brownian particles in a fluid, under random impacts of surrounding fluid molecules。 This stochastic differential equation, although important for understanding Brownian motion, went largely unnoticed in the mathematical community until after stochastic calculus emerged in the late 1940s。 Introductory books on stochastic differential equations SDEs include [8,88,213]。
The goal for this book is to examine and present select dynamical systems concepts, tools, and methods for understanding solutions of SDEs。 To this end, we also need basic information about deterministic dynamical systems modeled by ordinary differential equations ODEs, as presented in the first couple of chapters in one of the references [110,290]。
In this introductory chapter, we present a few examples of deterministic and stochastic dynamical systems, then briefly outline the contents of this book。
1。1 Examples of deterministic dynamical systems
We recall a few examples of deterministic dynamical systems, where short time-scale forcing and nonlinearity can affect dynamics in a profound way。
Example 1。1 A double-well system。
Consider a one-dimensional dynamical system x = x - x3。 It has three equilib?rium states, -1,0 and 1,at which the vector field x - x3 is zero。 Observe that
Note that x = x - x3 = -4,where the potential function Vx = -gx2 + ^x4 has two minimal values sometimes called “wells”),see Figure 1。1。
Figure 1。1 Plot of
A solution curve, or orbit, or trajectory, starting with x0 = xo in -1,0, decreases in time because 士 0 on this interval and approaches the equilibrium state - 1 as t ^ +oo, whereas an orbit starting with x0 = xo in -oo, -1, increases in time because x 0 on this interval and approaches the equilibrium state - 1 as t +oo。 Thus the equilibrium point {-1} is a stable equilibrium state and it is an attractor, i。e。, it attracts nearby orbits。 Likewise {1} is also an attractor。 But the equilibrium state {0} is unstable and is called an repeller。 See Figure 1。2 for a few representative solutions curves。
An orbit starting near one equilibrium state {-1} can not go anywhere near the other equilibrium state {1}, and vice versa。 There is no transition between these two stable states。
If we only look at the solution curves in the state space, E1, wherestate xlives,
we get a state portrait, or as often called, a phase portrait。
Figure 1。3 shows the phase portrait for this double well system。
Figure 1。3 Phase portrait ior x = x - xz
Example 1。2 High-frequency or short time-scale forcing。
Consider a simple one-dimensional nonlinear system with time-periodic forcing with frequency u
Solution curves with frequency a; = 2 and a; = 10 are shown inFigures1。4 and 1。5,
respectively。 The difference between low and high frequency forcing is visible。
Figure 1。4 Solutions of a; = -x -\-x3 e sinct^,x0 = 0。5 with frequency cj = 2: e = 0 no “oscillations” or in blue color and e = 0。35 with “oscillations” or in red color。 See Figure 1。4 in the Color Pictures section at the end of this book
Example 1。3 Small nonlinearity leads to fundamental change in dynamics。
Consider a harmonic oscillator a spring-mass system of mass m and spring constant fc, under damping that is proportional to the cubic of velocity: mx = -kx - ?xs, where 6: is a positive constant。 For simplicity, we take m, k both equal to 1。 This can also be achieved by rescaling the time。 Thus,
Figure 1。5 Solutions of x = -x + x3 + esinojt,x0 = 0。5 with frequency u - 10: e = 0 no “oscillations” or in blue color and e = 0。35 with “oscillations” or in red color。 See Figure 1。5 in the Color Pictures section at the end of this book or equivalently,
where x is the displacement and y is the velocity of the oscillator。 The equilibrium state is 0,0。
Without damping e = 0,the model equations become
Dividing these two equations, we obtain
Integrating this equation, we see that the solution curves xt,yt satisfy the conservation of energy for an arbitrary non-negative constant of integration, c。 Thus, the solution curves are circles, see Figure 1。6。
In the case of damping, i。e。, when e 0, the energy is not conserved:
at all points except the equilibrium point 0,0。 Thus, all orbits approach the equilibrium point 0,0 as t oo, no matter how small the damping coefficient e is, as shown in Figure 1。7。 Comparing Figure 1。6 and Figure 1。7, we see that the dynamics, with or without damping, are drastically different。
Example 1。4 Simple pendulum。
Consi

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.