新書推薦:
《
尼泊尔史:王权与变革
》
售價:NT$
430.0
《
战争事典085:德国人眼中的欧战胜利日:纳粹德国的最终失败
》
售價:NT$
499.0
《
步履匆匆:陈思和讲当代人文(杰出学者陈思和的人文之思、情怀之笔!)
》
售價:NT$
299.0
《
宋朝三百年
》
售價:NT$
790.0
《
行动中的理性
》
售價:NT$
440.0
《
礼制考古经典选读
》
售價:NT$
1340.0
《
MATLAB实用教程(第六版)
》
售價:NT$
695.0
《
中国思想的再发现(壹卷:近观系列,沟口雄三教授以其精湛的学术洞察力,旨在呈现一个全面而立体的中国思想图景)
》
售價:NT$
325.0
|
編輯推薦: |
《植物生理学(第五版)》内容体系结构合理,图文并茂,反映了植物生理学领域各个方向的研究内容和最新进展,适合植物科学领域的教学和研究参考。
|
內容簡介: |
《植物生理学(第五版)》英文版(第五版)由国际著名植物学家Lincoln Taiz 和Eduardo Zeiger 等著,Sinauer Associates 公司出版,是当今国际上植物生物学领域的重要教科书。《植物生理学(第五版)》围绕植物对水分和矿质营养的吸收和转运,光合作用、呼吸作用等植物体内的生化和代谢过程,以及植物生长发育及其调控3个单元精心组织内容,共计26 章。
|
目錄:
|
第1章植物细胞 1
1.1植物生命:一些统一的原理1
1.2植物结构总览 1
1.3植物细胞器 3
1.4内膜系统 7
1.5来源于内膜系统的独立分裂的细胞器14
1.6能独立分裂的半白主型细胞器15
1.7细胞骨架 19
1.8细胞周期调控 21
1.9胞间连丝 26
小结 27
第2章基因组结构与基因表达29
2.1核基因组结构 29
2.7植物细胞质基因组:线粒体和叶绿体35
2.3 核基因表达的转录调节38
2.4核基因表达的转录后渊节41
2.5基因功能的研究T具47
2.6作物遗传改良 50
小结 5
单元I 水和矿质营养
第3章水和植物细胞 57
3.1植物生命中的水 57
3.2水的结构和特征 58
3.3扩散和渗透作用 60
3.4水势 62
3.5植物细胞的水势 63
3.6细胞壁和细胞膜的特性65
3.7植物的水分状态 67
小结 68
第4章植物的水分平衡 71
4.1 土壤中的水分 71
4.2 根对水分的吸收 73
4.3水分通过木质部运输75
4.4水分从叶片散失到大气中80
总述:土壤一植物一大气连续体.85
小结 85
第5章矿质营养 87
5.1必需元素、必需元素缺乏和植物失调症87
5.2营养缺乏的治疗 95
5.3土壤、根和微生物96
小结 103
第6章溶质的运输 104
6.1被动运输和主动运输104
6.2离子的跨膜运输 106
6.3膜的转运过程 109
6.4膜转运蛋白 114
6.5根中的离子运输 122
小结 124
单元Ⅱ 生化和代谢
第7章光合作用:光反应 129
7.1高等植韧中的光合作用129
7.2基本概念 129
7.3 了解光合作用的关键实验133
7.4光合细胞器的构成136
7.5 吸光天线系统的构造139
7.6 电子传递的机制 141
7.7叶绿体中的质子转运和ATP合成149
7曙光合作用系统的修复和调节152
7.9光合作用系统的遗传、组装和进化153
小结 156
第8章光合作用:碳反应 158
8.1卡尔文一本森循环 158
8.2卡尔文一本森循环的调控163
8.3 C:氧化光合碳循环166
8.4无机碳浓缩机制 172
8.5无机碳浓缩机制:C。碳循环.172
8.6无机碳浓缩机制:景天酸代谢CAM1.177
8.7光合作用中淀粉和蔗糖的积累与分流179
8.8叶绿体淀粉产生与动员180
8.9蔗糖生物合成及其信号途径185
小结 189
第9章光合作用:生理和生态思考192
9.1光合作用是叶片的基木功能193
9.2结构和功能完整的叶片对光的光合响应
策略 197
9.3光合作用对温度的响应201
9.4光合作用对二氧化碳的响应203
9.5揭示不同的光合途径208
小结 211
第10章韧皮部转运 213
10.1韧皮部转运的途径213
10.2转运模式:源到库218
10.3韧皮部转运物质一 218
10.4转运速率 221
10.5韧皮部运输的压力流动模型——被动运输
221
10.6韧皮部装载 224
10.7韧皮部卸载及库到源的转变229
10.8光合产物的分布:分配和分割231
10 9信号转导分子的运输234
小结 235
第11章呼吸作用与脂代谢 238
11.1植物的呼吸作用 238
11.2脂代谢 261
小结 268
第12章矿质营养的同化 271
12.1环境中的氮一 271
12.2硝酸盐的同化 273
12.3铰的同化 276
12.4氨基酸的生物合成278
12.5生物固氮 279
12.6硫的同化一 284
12.7磷酸盐的同化一 286
12.8 阳离子的同化 287
12.9氧的同化 289
12.10营养物质同化的能学289
小结 290
第13章次生代谢和植物防御反应292
13.1次生代谢一 292
13.2萜类一 293
13.3酚类化合物 297
13.4含氮化合物 303
13.5诱导植物防御反应抵抗植食昆虫307
13.6植物对病原菌的防御反应3 1 1
小结 316
单元Ⅲ 生长和发育
第14章信号转导 321
14.1植物细胞与动物细胞的信号转导322
14.2信号传递的时空性333
小结 336
第15章细胞壁:结构、生物合成和扩展338
15.1植物细胞壁的结构和合成338
15.2细胞的扩张方式 353
15.3细胞的扩张速率 356
小结 360
第16章生长与发育 362
16.1植物生长发育总览362
16.2胚胎发生:极性的起源364
16.3分生组织:无限生长型的基础375
16.4根顶端分生组织 376
16.5茎顶端分生组织 380
16.6营养器官发生 386
16.7衰老和细胞程序性死亡390
小结 392
第17章光敏色素和光调控的植物发育394
17.1光敏色素的光化学和生物化学特性394
17.2光敏色素诱导反应的特点397
17.3光敏色素蛋白的结构和功能399
17.4光敏色素功能的遗传分析403
17.5光敏色素信号途径 406
17.6昼夜节律 409
17.7生态学功能 411
小结 414
第18章蓝光反应:形态建成和气孔运动417
18.1监光反应的光生理学418
18.2蓝光反应的调节 425
18.3蓝光受体 425
小结 431
第19章生长素一一第一种被发现的植物生长激素434
19.1生长素概念的发现434
19.2主要的生长素:吲哚-3-乙酸436
19.3 生长素的运输 439
19.4生长素信号转导途径448
19.5生长素的作用:细胞伸长450
19.6生长素的作用:植物的向性453
19.7生长素对生长发育的影响460
小结 464
第20章赤霉素:植物高度和种子萌发的调节因子466
20.1赤霉素的发现及其化学结构466
20.2赤霉素对生长和发育的影响468
20.3赤霉素的生物合成与失活470
20.4赤霉素信号途径:响应突变体的重要性476
20.5赤霉素响应:DELLA蛋白的早期靶标.483
20.6赤霉素响应:谷类植物糊粉层483
20.7赤霉素响应:花药发育和雄性肓性488
20.8赤霉素响应:茎的生长491
小结 492
第21章细胞分裂素:细胞分裂的调节因子495
21.1细胞分裂和植物发育495
21.2细胞分裂素的发现、鉴定和特性496
21.3细胞分裂素的生物合成、代谢和运输499
21.4细胞分裂素在细胞和分子水平上的作用
模式一 503
21.5细胞分裂素的生物学功能506
小结 515
第22章 乙烯:气体激素 517
22.1 乙烯的结构、生物合成及测定517
22.2乙烯信号转导途径520
22.3 乙烯调控基因表达524
22.4乙烯在植物发育和生理反应中的作用524
小结 532
第23章脱落酸:种子成熟和胁迫反应激素534
23.1 ABA的产生、化学结构和测定534
23.2 ABA的生物合成、代谢和运输535
23.3 ABA信号转导途径538
23.4 ABA调节基因表达543
23.5 ABA在发育中的作用和生理效应544
小结 551
第24章油菜素甾醇:细胞扩大和发育的调节子553
24.1油菜素甾醇的结构、发生及遗传分析554
24.2油菜素甾醇的信号转导途径556
24.3油菜素甾醇的生物合成、代谢及运输559
24.4油菜素甾醇对生长和发育的影响564
24.5油菜素甾醇在农业上的应用前景567
小结 567
第25章开花的控制 569
25.1花分生组织和花器官的发育569
25.2花发端的内在和外在因素574
25.3茎尖和时相变化 574
25.4近似昼夜节律circadian rhythm:内在的生物钟 578
25.5光周期现象:监测日长580
25.6春化作用:冷处理可以促进植物开花587
25.7与开花有关的长距离信号过程590
小结 595
第26章非生物胁迫的应答与适应597
26.1适应性与表型可塑性597
26.2非生物环境及其对植物的生物学影响598
26.3水分亏缺与洪涝 599
26.4土壤中矿质元素的失衡601
26.5温度胁迫 602
26.6强光胁迫 604
26.7保护植物抵御极端环境的生长发育和生理机制 605
小结 616
参考文献
附录1能量和酶
Al.l生命系统中的能量流
A1.2能和功
A1.3 白发过程的方向
A1.4 自由能和化学势
A1.5氧化还原反应
A1.6电化学势
A1.7酶:生命的催化剂
附录2植物生长分析
A2.1生长速率和生长曲线
附录3 激素生物合成途径
A3.1氨基酸途径
A3.2类异戊二烯途径
A3.3脂类
索引
|
內容試閱:
|
第1章
植物细胞
1.1植物生命:一些统一的原理
所周知,植物的大小和形态丰富多样?植物体的高度从小于1 cm直到大于100 m?植物形态,或者说形状,也有惊人的多样性?小小的浮萍Lemma似乎和巨大的仙人掌或红杉树没什么相似之处?没有一种植物能够表现出地球上的植物对于环境所具有的全部适应性,因此植物生理学家选择研究模式生物model organism?那些生长周期短?基因组小的植物被选为模式植物参见Web Topic1.1 ?这些模式植物非常有用,如果不考虑它们各自的适应性,所有植物基本都进行着相似的活动,并且基于相同的结构模式?可以将决定植物生活方式的主要因素概括如下?
1作为地球上的初级生产者,绿色植物是太阳能最终的收集者?它们通过转化光能为化学能来收集太阳能,化学能储存在二氧化碳和水合成碳水化合物时形成的化学键中?
2除了一些生殖细胞,植物是不移动的?为了弥补这一不足,植物进化出了在生命周期中向重要资源如光?水和矿质营养生长的能力?
3陆生植物在向光生长时,通过增强结构来支撑其质量,以对抗向地的重力?
4陆生植物具有将土壤中的水分和矿物质运输到光合作用和生长所需要地方的机制,以及将光合作用产物转移到非光合作用器官和组织的机制?
5陆生植物通过蒸腾作用连续失水,并进化出防止脱水的机制?
1.2 植物结构总览
虽然外观各异,但是所有种子植物参见Web Topic1.2 都有相同的基本形体轮廓图1.1 ?营养体由3种器官组成:叶?茎和根?叶的主要功能是光合作用,茎用于支撑,根起固定及吸收水分和矿质营养的作用?叶在节上和茎相连,两个节之间的区域称为节间,茎和叶一起统称为地上部?
种子植物有两类:裸子植物和被子植物?裸子植物Gymnosperm来自于希腊文,是种子裸露之意较低等,已知的大约有700种?裸子植物中最大的类群PLANT PHYSIOLOGY
图1.1 典型双子叶植物的示意图?是松类“松果产生者”,包括一些重要的经济森林树种,如松树?枞树?云杉和红杉?
被子植物Angiosperm来自于希腊文,是种子在罐中之意,是种子植物中较高等的,在1亿年前的白垩纪开始大量出现?现在它们在植被中占有绝对优势,远胜于裸子植物?已知的约有25 万种,但是还有许多没有进行分类?种子植物的主要进化是出现了花,因此也称为开花植物flowering plant参见Web Topic 1.3 ?
1.2.1 植物细胞被坚硬的细胞壁包围
植物和动物的一个基本区别是每个植物细胞被一层坚硬的细胞壁cell wall包围?在动物中,胚性细胞能从一个位置移动到另一个位置,因此发育中的组织和器官可以包含起源于生物体不同部位的细胞?而在植物体中没有这样的细胞移动?每个带细胞壁的细胞与相邻细胞都由胞间层middle lamella粘合起来,因此,不同于动物发育,植物发育只依赖细胞分裂和细胞增大的模式?
植物细胞有两种细胞壁:初生细胞壁primary cell wall和次生细胞壁secondary cell wall图1.2 ?初生细胞壁通常很薄小于1 μm,通常存在于幼嫩和正在生长的细胞中?次生细胞壁比初生细胞壁更厚,更强韧,并且在大多数细胞增大终止后沉积?次生细胞壁的强度和韧性是由木质素lignin决定的,木质素是一种易碎的?胶状的物质见第15 章?次生细胞壁上的圆形豁口形成了单纹孔simple pit,并且一个细胞的单纹孔经常和相邻细胞壁上的单纹孔相对?相连的单纹孔称为纹孔对pit-pair?
图1.2 图示初生细胞壁和次生细胞壁及其与细胞其他部分的关系?
木质化次生细胞壁的出现使植物结构得到强化,使得植物能够在土壤之上进行垂直生长并且定植于土壤中?而缺少木质化细胞壁的苔藓植物,如苔藓和地钱,在地面生长高度则不超过几厘米?
1.2.2 新细胞产生于分生组织
植物生长主要集中于特定的细胞分裂区域,这些区域称为分生组织meristem?几乎所有的核分裂有丝分裂和细胞分裂胞质分裂都发生于这些分生区域?在幼嫩植物中,最活跃的分生组织称为顶端分生组织apical meristem,它们位于茎尖和根尖图
1.1 ?在节上,腋芽axillary bud包含侧枝的顶端分生组织?侧根产生于中柱鞘pericycle,这是一个内部的分生组织图1.1C ?靠近相邻分生区并与之重叠的区域是细胞伸长区?在伸长区中细胞的长度和宽度大幅度增加?细胞通常在它们伸长后分化成特定的类型?
产生新器官和形成基本植物模式的发育期称为初生生长primary growth?初生生长是顶端分生组织活动的结果,在此期间细胞进行分裂,紧接着是细胞逐步增大,主要是细胞伸长,产生轴向基-顶的极性?当某个区域中的伸长完成后,可能发生次生生长secondary growth,产生径向内-外的极性?次生生长有两种侧生分生组织参与:维管形成层vascularcambium ,复数cambia和木栓形成层cork cambium?维管形成层产生次生木质部木材和次生韧皮部?木栓形成层产生周皮,主要由木栓细胞组成?
1.2.3 三种主要组织系统组成了植物体
三种主要组织系统存在于所有的植物器官:表皮组织?基本组织和维管组织?图1.3 中简明地标出了这些组织?关于这些植物组织更详细的描述参见Web Topic1. 4 ?
1.3 植物细胞器
所有植物细胞都具有真核细胞所共有的细胞器,包括一个细胞核?细胞质和亚细胞器,并且它们被包被在作为边界的膜中,除此之外,还有富含纤维素的细胞壁图1.4 ?某些结构,包括细胞核,在细胞成熟过程中可能消失,但是所有的植物细胞开始时都含有相似的细胞器?这些细胞器根据它们的产生方式主要被分为以下三大类?
1内膜系统:指内质网?核膜?高尔基体?内体和质膜?内膜系统在分泌?膜再循环及细胞周期等过程中有着重要的作用?质膜调控着细胞运输的整个过程?内体就是来源于质膜的囊泡并且对囊泡中的内含物进行加工和再循环?
2起源于内膜系统的能独立分裂的细胞器:包括油体?过氧化物酶体,以及在脂类储藏和碳循环中发挥作用的乙醛酸循环体?
3能独立分裂的半自主型细胞器:包括质体和作用于能量代谢和储藏的线粒体
由于所有的这些细胞器都是膜构成的区室,因此先从膜的结构和功能开始描述?
1.3.1 生物膜由含有蛋白质的磷脂双分子层 构成
所有细胞被包裹于作为外部边界的质膜中,质膜将胞质和外界环境隔离?这层质膜plasma membrane 也称plasmalemma使得细胞能吸收和保留某些物质而排出其他物质?各种镶嵌在质膜上的转运蛋白负责溶质?水溶性离子和不带电荷的小分子的选择性跨膜运输?通过转运蛋白而在胞质中积累离子和分子的过程需要消耗能量?膜同样也为特化的胞内细胞器划定了边界,并能够调控离子和代谢产物进出这些区域?
根据流动镶嵌模型fluid-mosaic model,所有的生物膜都有相同的基本分子结构?它们由蛋白质镶嵌于其中的磷脂在叶绿体中为糖基甘油酯双分子层bilayer 构成图1.5A,C?每一层称为双分子层中的层leaflet ?在大部分质膜中,蛋白质占据了其中的一半?但是,各种膜的脂类成分和蛋白质性质不尽
图1.3 百岁兰Welwitschia mirabilis 叶片的外表皮表皮组织120×A?
3种基本组织的示意图:薄壁组织B?厚角组织C?厚壁组织D与木质部和韧皮部的运输细胞
1. 磷脂
磷脂phospholipid 是一种由两个脂肪酸和甘油共价结合形成的脂类,其中的甘油又和一个磷酸基团共价结合?另外有一些可变的成分与磷酸基团相连,称为头部基团head group ,如丝氨酸?胆碱或肌醇图1.5C ?脂肪酸的非极性碳水化合物链形成一个疏水区域?与脂肪酸不同,头部基团呈高度极性,因此磷脂分子是兼性分子amphipathic ,同时具有亲水性和疏水性?各种磷脂不对称地镶嵌在质膜中,赋予了质膜方向性?对着细胞外侧的质膜层与对着胞质的质膜层的磷脂构成是不同的?
一类称为质体plastid它是包括叶绿体在内的一类膜包围的细胞器的特化细胞器的膜脂成分几乎都是糖基甘油酯glycosylglyceride而不是磷脂?在糖基甘油酯中,极性的头部集团由半乳糖?双半乳糖或硫化半乳糖组成,而没有磷酸基团参见Web Topic 1.5 ?
虽然磷脂和糖基甘油酯的脂肪酸链长度是可变的,但是它们通常由14~24 个碳组成?如果碳原子之间由单键连接,脂肪酸链则是饱和的带有氢原子,如果含有一个或多个双键,该链则称为不饱和脂肪酸链?
脂肪酸链中的双键能在链中旋转形成一个结节,从而防止双分子层中磷脂的紧密堆积例如,这些键采用了结节状的顺式构象,而不是非结节状的反式构象?这些结节增加了膜的流动性?而流动性又在膜的许多功能中起到重要作用?温度也强烈影响膜的流动性?因为植物基本不能调控体温,而低温会降低膜的流动性,所以它们经常存在如何维持低温下膜的流动性的问题?为此,植物磷脂中含有大量不饱和脂肪酸,如十八烯酸oleic acid 一个双键?亚油酸linoleic acid两个双键和α-亚麻酸α-linolenic acid3个双键,从而增强膜的流动性见第26章?
2. 蛋白质
和脂类双分子层相结合的蛋白质主要有3种类型:整合蛋白?外周蛋白和锚定蛋白?另外,蛋白质和脂类能在膜中形成暂时的聚集体,称为脂筏lipid raft ?
整合蛋白integral protein嵌在双层脂中?多数整合蛋白横跨磷脂双分子层,因此蛋白质的一部分与细胞外部互作,一部分与膜的疏水核心互作,还有一部分与细胞内部——胞质部分互作?作为离子通道的蛋白质见第6章都是整合蛋白,并作为参与某些信号转导途径的受体见第14 章?在质膜外表面的一些受体样蛋白识别并紧密结合细胞壁组分,使质膜和细胞壁有效交联?
图1.5 A. 质膜?内质网和由镶嵌在磷脂双分子层中的蛋白质组成的植物细胞的其他内膜?B. 透射电子显微照片表明水芹Lepidium sativum 根尖分生组织的质膜?质膜的全厚度,两条粗线之间的距离为8 nm ?C. 典型的磷脂化学结构和空间结构模型,卵磷脂和单半乳糖基二酯酰甘油改编自Gunning and Steer,1996 ?
外周蛋白peripheral protein通过非共价键如丝的互作?们会被高盐溶液或促溶剂chaotropic agent从膜上分离,前者打破离子键,后者打破氢键图1.5A?外周蛋白在细胞中起着很多作用,有些参与形成质膜和细胞骨架,如微管和微丝的互作?这将在本章后面讨论?
锚定蛋白anchored protein通过脂类分子和质膜表面共价相连?这些脂类包括脂肪酸肉豆蔻酸和棕榈酸,源于类异戊二烯途径的异戊二烯基团法尼基和牻牛儿牻牛儿基和糖磷脂酰肌醇GPI-锚定蛋白
|
|