登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』离散数学及其应用(原书第7版 本科教学版)

書城自編碼: 2950079
分類: 簡體書→大陸圖書→自然科學數學
作 者: [美] 肯尼思H.罗森
國際書號(ISBN): 9787111555391
出版社: 机械工业出版社
出版日期: 2017-01-01
版次: 1 印次: 1
頁數/字數: 435/435000
書度/開本: 16开 釘裝: 平装

售價:NT$ 425

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
6S精益管理实战(精装版)
《 6S精益管理实战(精装版) 》

售價:NT$ 458.0
世界文明中的作物迁徙:聚焦亚洲、中东和南美洲被忽视的本土农业文明
《 世界文明中的作物迁徙:聚焦亚洲、中东和南美洲被忽视的本土农业文明 》

售價:NT$ 454.0
无端欢喜
《 无端欢喜 》

售價:NT$ 347.0
股票大作手操盘术
《 股票大作手操盘术 》

售價:NT$ 245.0
何以中国·何谓唐代:东欧亚帝国的兴亡与转型
《 何以中国·何谓唐代:东欧亚帝国的兴亡与转型 》

售價:NT$ 398.0
一间只属于自己的房间 女性主义先锋伍尔夫代表作 女性精神独立与经济独立的象征,做自己,比任何事都更重要
《 一间只属于自己的房间 女性主义先锋伍尔夫代表作 女性精神独立与经济独立的象征,做自己,比任何事都更重要 》

售價:NT$ 203.0
泉舆日志 幻想世界宝石生物图鉴
《 泉舆日志 幻想世界宝石生物图鉴 》

售價:NT$ 611.0
养育女孩 : 官方升级版
《 养育女孩 : 官方升级版 》

售價:NT$ 230.0

建議一齊購買:

+

NT$ 1001
《 流畅的Python 》
+

NT$ 569
《 线性代数及其应用(原书第4版) 》
+

NT$ 522
《 Java从入门到精通(第4版)(附光盘) 》
+

NT$ 668
《 Python编程 从入门到实践 》
+

NT$ 743
《 浪潮之巅 第三版 上下册 》
內容簡介:
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
關於作者:
关于作者Discrete Mathematics and Its Applications,7EKenneth H.Rosen 作为位于新泽西州蒙茅斯县的AT&T实验室杰出技术会员已经拥有一段很长的职业生涯。目前他在蒙茅斯大学任访问研究教授,为研究生讲授计算机科学课程。Rosen博士于1972年获得位于安娜堡的密歇根大学数学学士学位,1976年获得麻省理工学院数学博士学位,在哈罗德·斯塔克(Harold Stark)的指导下他撰写了数论方面的博士论文。1982年加入贝尔实验室之前,他曾就职于科罗拉多大学博尔德分校;哥伦布市的俄亥俄州立大学;在欧洛诺市的缅因大学任数学副教授。在AT&T工作时,他在蒙茅斯大学任教,教授离散数学、编码理论和数据安全方面的课程。他目前教授算法设计以及计算机安全和密码学方面的课程。Rosen博士在数论及数学建模的专业期刊上发表了大量论文。他是《初等数论及其应用》(Elementary Number Theory and Its Applications)的作者,该书由Pearson培生出版并广为采用,目前第6版也已经翻译成了中文。他也是《离散数学及其应用》Discrete Mathematics and Its Applications的作者,该书由McGraw-Hill麦格劳希尔出版,目前是第7版。《离散数学及其应用》Discrete Mathematics and Its Applications自出版以来在北美发行超过350 000册,在世界其余各地发行成千上万册。这本书也已经被翻译成法文、希腊文、中文、越南文和韩文。他还是《UNIX:参考大全》UNIX:The Complete Reference、《UNIX系统V版本4:简介》UNIX System V Release4:An Introduction、《佳UNIX小技巧》Best UNIX Tips Ever的合著者,这些书均由奥斯本麦格劳希尔出版。这些书发行超过150 000册,并翻译成中文、德文、西班牙文和意大利文。Rosen博士还是由CRC出版社出版的《离散及组合数学手册》Handbook of Discrete and Combinatorial Mathematics的编辑,他是CRC离散数学丛书的顾问编辑,丛书包括超过55卷论述离散数学的不同方面,其中大多数内容在这本手册中有介绍。Rosen博士现任《离散数学》(Discrete Mathematics)期刊副主编,负责审阅提交的论文,涉及离散数多个领域,包括图论、枚举和数论。他对将数学软件集成到教育和专业环境中很有兴趣,并在这些方面参与和Waterloo Maple Inc.的MapleTM软件的一些合作项目。Rosen博士还和多家出版公司合作开发作业交付平台。在贝尔实验室和AT&T实验室期间,Rosen博士所从事的项目涉猎广泛,包括运筹学研究、计算机和通信设备的产品线规划和技术评估。他帮助规划AT&T在多媒体领域的产品和服务,包括视频会议、语音识别、语音合成和图像联网。他为AT&T使用新技术做评估,并在图像联网领域从事标准化工作。他还发明了许多新服务,并持有超过55项专利。他的一个有趣的项目涉及帮助评估AT&T为提高吸引力而采用的技术,这也是EPCOT中心的一部分。
目錄
目录Discrete Mathematics and Its Applications,7E出版者的话改编者序译者序前言配套网站致学生关于作者符号表第1章 基础:逻辑和证明1 1.1 命题逻辑11.1.1 引言11.1.2 命题11.1.3 条件语句41.1.4 复合命题的真值表71.1.5 逻辑运算符的优先级71.1.6 逻辑运算和位运算7练习8 1.2 命题逻辑的应用111.2.1 引言111.2.2 语句翻译111.2.3 系统规范说明121.2.4 布尔搜索121.2.5 逻辑谜题131.2.6 逻辑电路14练习15 1.3 命题等价式161.3.1 引言161.3.2 逻辑等价式171.3.3 德·摩根律的运用191.3.4 构造新的逻辑等价式191.3.5 命题的可满足性201.3.6 可满足性的应用201.3.7 可满足性问题求解22练习22 1.4 谓词和量词241.4.1 引言241.4.2 谓词241.4.3 量词251.4.4 约束论域的量词281.4.5 量词的优先级291.4.6 变量绑定291.4.7 涉及量词的逻辑等价式291.4.8 量化表达式的否定301.4.9 语句到逻辑表达式的翻译311.4.10 系统规范说明中量词的使用321.4.11 选自路易斯·卡罗尔的例子331.4.12 逻辑程序设计33练习34 1.5 嵌套量词371.5.1 引言371.5.2 理解涉及嵌套量词的语句371.5.3 量词的顺序381.5.4 数学语句到嵌套量词语句的翻译391.5.5 嵌套量词到自然语言的翻译401.5.6 汉语语句到逻辑表达式的翻译401.5.7 嵌套量词的否定41练习42 1.6 推理规则451.6.1 引言451.6.2 命题逻辑的有效论证451.6.3 命题逻辑的推理规则461.6.4 使用推理规则建立论证481.6.5 消解律491.6.6 谬误491.6.7 量化命题的推理规则501.6.8 命题和量化命题推理规则的组合使用51练习52 1.7 证明导论531.7.1 引言531.7.2 一些专用术语531.7.3 理解定理是如何陈述的541.7.4 证明定理的方法541.7.5 直接证明法541.7.6 反证法551.7.7 归谬证明法571.7.8 证明中的错误591.7.9 良好的开端60练习60 1.8 证明的方法和策略611.8.1 引言611.8.2 穷举证明法和分情形证明法611.8.3 存在性证明651.8.4 唯一性证明661.8.5 证明策略661.8.6 寻找反例681.8.7 证明策略实践681.8.8 拼接681.8.9 开放问题的作用711.8.10 其他证明方法71练习72 关键术语和结论73 复习题75 补充练习75 计算机课题78 计算和探索78 写作课题78第2章 基本结构:集合、函数、序列、求和与矩阵79 2.1 集合792.1.1 引言792.1.2 文氏图812.1.3 子集812.1.4 集合的大小822.1.5 幂集832.1.6 笛卡儿积832.1.7 使用带量词的集合符号842.1.8 真值集和量词84练习85 2.2 集合运算862.2.1 引言862.2.2 集合恒等式882.2.3 扩展的并集和交集902.2.4 集合的计算机表示91练习92 2.3 函数942.3.1 引言942.3.2 一对一函数和映上函数962.3.3 反函数和函数组合982.3.4 函数的图1002.3.5 一些重要的函数1012.3.6 部分函数103练习103 2.4 序列与求和1062.4.1 引言1062.4.2 序列1062.4.3 递推关系1072.4.4 特殊的整数序列1092.4.5 求和111练习114 2.5 集合的基数1162.5.1 引言1162.5.2 可数集1162.5.3 不可数集合118练习120 2.6 矩阵1212.6.1 引言1212.6.2 矩阵算术1222.6.3 矩阵的转置和幂1232.6.4 0-1矩阵124练习125 关键术语和结论126 复习题128 补充练习129 计算机课题131 计算和探索131 写作课题131第3章 计数132 3.1 计数的基础1323.1.1 引言1323.1.2 基本的计数原则1323.1.3 比较复杂的计数问题1363.1.4 减法法则(两个集合的容斥原理)1373.1.5 除法法则1383.1.6 树图138练习139 3.2 鸽巢原理1413.2.1 引言1413.2.2 广义鸽巢原理1423.2.3 鸽巢原理的几个简单应用144练习145 3.3 排列与组合1463.3.1 引言1463.3.2 排列1463.3.3 组合148练习150 3.4 二项式系数和恒等式1513.4.1 二项式定理1513.4.2 帕斯卡恒等式和三角形1533.4.3 其他的二项式系数恒等式154练习155 3.5 排列与组合的推广1573.5.1 引言1573.5.2 有重复的排列1573.5.3 有重复的组合1573.5.4 具有不可区别物体的集合的排列1603.5.5 把物体放入盒子161练习163 3.6 生成排列和组合1653.6.1 引言1653.6.2 生成排列1653.6.3 生成组合166练习167 关键术语和结论168 复习题169 补充练习170 计算机课题173 计算和探索173 写作课题174第4章 高级计数技术175 4.1 递推关系的应用1754.1.1 引言1754.1.2 用递推关系构造模型1764.1.3 算法与递推关系180练习181 4.2 求解线性递推关系1844.2.1 引言1844.2.2 求解常系数线性齐次递推关系1844.2.3 常系数线性非齐次的递推关系188练习190 4.3 分治算法和递推关系1914.3.1 引言1914.3.2 分治递推关系192练习197 4.4 生成函数1984.4.1 引言1984.4.2 关于幂级数的有用事实1984.4.3 计数问题与生成函数2014.4.4 使用生成函数求解递推关系2044.4.5 使用生成函数证明恒等式205练习206 4.5 容斥2084.5.1 引言2084.5.2 容斥原理208练习211 4.6 容斥原理的应用2124.6.1 引言2124.6.2 容斥原理的另一种形式2124.6.3 埃拉托色尼筛2134.6.4 映上函数的个数2134.6.5 错位排列214练习216 关键术语和结论216 复习题217 补充练习218 计算机课题221 计算和探索221 写作课题221第5章 关系223 5.1 关系及其性质2235.1.1 引言2235.1.2 函数作为关系2245.1.3 集合的关系2245.1.4 关系的性质2255.1.5 关系的组合227练习228 5.2 n元关系及其应用2305.2.1 引言2305.2.2 n元关系2315.2.3 数据库和关系2315.2.4 n元关系的运算2325.2.5 SQL234练习235 5.3 关系的表示2365.3.1 引言2365.3.2 用矩阵表示关系2365.3.3 用图表示关系238练习239 5.4 关系的闭包2405.4.1 引言2405.4.2 闭包2415.4.3 有向图中的路径2415.4.4 传递闭包2425.4.5 沃舍尔算法245练习247 5.5 等价关系2475.5.1 引言2475.5.2 等价关系2485.5.3 等价类2495.5.4 等价类与划分250练习253 5.6 偏序2555.6.1 引言2555.6.2 字典顺序2565.6.3 哈塞图2575.6.4 极大元与极小元2595.6.5 格2605.6.6 拓扑排序261练习263 关键术语和结论265 复习题267 补充练习268 计算机课题271 计算和探索272 写作课题272第6章 图273 6.1 图和图模型2736.1.1 图模型276练习279 6.2 图的术语和几种特殊的图2816.2.1 引言2816.2.2 基本术语2816.2.3 一些特殊的简单图2836.2.4 二分图2846.2.5 二分图和匹配2866.2.6 特殊类型图的一些应用2886.2.7 从旧图构造新图289练习291 6.3 图的表示和图的同构2936.3.1 引言2936.3.2 图的表示2936.3.3 邻接矩阵2936.3.4 关联矩阵2956.3.5 图的同构2966.3.6 判定两个简单图是否同构296练习298 6.4 连通性3016.4.1 引言3016.4.2 通路3016.4.3 无向图的连通性3036.4.4 图是如何连通的3046.4.5 有向图的连通性3066.4.6 通路与同构3076.4.7 计算顶点之间的通路数308练习308 6.5 欧拉通路与哈密顿通路3116.5.1 引言3116.5.2 欧拉通路与欧拉回路3116.5.3 哈密顿通路与哈密顿回路3156.5.4 哈密顿回路的应用316练习318 6.6 最短通路问题3206.6.1 引言3206.6.2 最短通路算法3226.6.3 旅行商问题325练习326 6.7 平面图3286.7.1 引言3286.7.2 欧拉公式3296.7.3 库拉图斯基定理332练习333 6.8 图着色3346.8.1 引言3346.8.2 图着色的应用337练习338 关键术语和结论340 复习题343 补充练习344 计算机课题348 计算和探索349 写作课题349第7章 树351 7.1 树的概述3517.1.1 有根树3527.1.2 树作为模型3557.1.3 树的性质356练习358 7.2 树的应用3607.2.1 引言3607.2.2 二叉搜索树3607.2.3 决策树3627.2.4 前缀码3647.2.5 博弈树365练习369 7.3 树的遍历3717.3.1 引言3717.3.2 通用地址系统3717.3.3 遍历算法3727.3.4 中缀、前缀和后缀记法377练习379 7.4 生成树3807.4.1 引言3807.4.2 深度优先搜索3827.4.3 宽度优先搜索3847.4.4 回溯的应用3857.4.5 有向图中的深度优先搜索387练习388 7.5 最小生成树3907.5.1 引言390
內容試閱
前言Discrete Mathematics and Its Applications,7E本书是根据我多年讲授离散数学的经验和兴趣写成的。对学生而言,我的目的是为他们提供准确且可读性很强的教材,清晰地介绍并展示离散数学中的概念和技术。我的目标是向爱怀疑的学生们展示离散数学的相关性和实用性,希望为学习计算机科学的学生提供一切必需的数学基础,也希望学数学的学生理解重要的数学概念,以及为什么这些概念对应用来说很重要,最重要的是希望本书既能达到这些目标,又不含太多的水分。对教师而言,我的目的是要利用数学中行之有效的教学技术来设计一个灵活而全面的教学工具,希望为教师提供能够以最适合特定学生特点的方式高效地教授离散数学的教材。希望本书能够达到这些目标。我为本教材在过去所取得的巨大成功而感到非常欣慰。根据北美600多所学校以及全球各地许多大学成功采用了本书的大批师生的反馈和建议,此次第7版进行了许多改进。本教材是为一至两个学期的离散数学入门课程而设计的,适用于数学、计算机科学和工程等各类专业的学生。虽然唯一的先修课程要求是大学代数,但是要想真正学好离散数学还需要掌握更多的数学知识。离散数学课程的目标离散数学课程有多个目标。学生不仅要学会一些特定的数学知识并知道怎样应用,更重要的是,这样一门课应培养学生的数学逻辑思维。为此,本教材特别强调数学推理以及用不同的方法解题。本书中五个重要主题交织在一起:数学推理、组合分析、离散结构、算法思维、应用与建模。成功的离散数学课程应该努力使这五个主题相互融合、平衡。1.数学推理:学生必须理解数学推理,以便阅读、领会并构造数学论证。本书以数理逻辑开篇,在后面证明方法的讨论中,数理逻辑是基础。本书描述了构造证明的方法与技巧。本书特别强调数学归纳法,不仅给出了这种证明的许多不同类型的实例,还详细地解释了数学归纳法为什么是有效的证明技术。2.组合分析:一个重要的解题技巧就是计数或枚举对象。本书中,对枚举的讨论从计数的基本技术着手,重点是用组合分析方法来解决计数问题并分析算法,而不是简单地应用公式。3.离散结构:离散数学课程应该教会学生如何处理离散结构,即表示离散对象以及对象之间关系的抽象数学结构。离散结构包括集合、置换、关系、图、树和有限状态机等。4.算法思维:有些问题可以通过详细说明其算法来求解。在清楚地描述算法后,就可以构造一个计算机程序来实现它。这一过程中涉及的数学部分包括算法的详细说明、正确性验证以及执行算法所需要的计算机内存和时间的分析等,这些内容在本书中均有介绍。算法是用英语 译著中采用汉语。——译者注和一种易于理解的伪代码来描述的。5.应用与建模:离散数学几乎在每个可以想象到的研究领域中都有应用,本书介绍了其在计算机科学和数据网络中的许多应用,还介绍了在其他各种领域中的应用,如化学、植物学、动物学、语言学、地理学、商业以及因特网等。这些均是离散数学的实际而又重要的应用,而不是编造的。用离散数学来建模是十分重要的问题求解技巧,本书中的一些练习让学生有机会通过自己构造模型掌握这一技巧。本书特色易理解性:本书对于初学者来说已被实践证明是易读易懂的。绝大部分内容不需要读者具备比大学代数更多的数学预备知识。需要额外帮助的学生可以在配套网站找到相应工具将数学水平提升到本书的水准。本书中少数几个需要参考微积分的地方也已显式注明。大多数学生应该很容易理解书中用来表示算法的伪代码,无论他们是否正式学过程序设计语言。本书不要求正规计算机科学方面的预备知识。每章都是从易于理解和领会的水平开始。一旦详细介绍了基本数学概念,就会给出稍难一些的内容以及在其他研究领域中的应用。灵活性:本书为能灵活使用做了精心设计。各章对其前面内容的依赖程度都降到最低。每章分成长度大致相等的若干节,每节又根据内容划分成若干小节以方便教学。教师可以根据这些分块灵活地安排讲课进度。写作风格:本书的写作风格是直接而又实用的。使用准确的数学语言,但没有采用过多的形式化与抽象。在数学命题中的记号和词语表达之间做了精心的平衡。数学严谨性和准确性:本书中所有定义和定理的陈述都十分仔细,这样学生可以欣赏语言的准确性和数学所需的严谨性。证明则先是动机再缓慢展开,每一步都经过了详细论证。证明中用到的公理及其所导出的基本性质在附录中均有显式描述,这呈现给学生一个清晰的概念,即在一个证明中他们能够作何种假设。本书解释并大量使用了递归定义。实例:通过许多例子阐述概念、建立不同主题之间的关联,并介绍应用。在大部分例子中,首先提出问题,然后再以适量的细节给出其解。应用:本书中所含的应用展示了离散数学在解决现实世界中的问题时的实用性。本书包含的应用涉及广泛的领域,包括计算机科学、数据网络、心理学、化学、工程学、语言学、生物学、商业和因特网。算法:离散数学的结论常常要用算法来表述,因此本书每章都介绍一些关键算法。这些算法采用文字叙述,同时也采用一种易于理解的结构化伪代码来描述。简要分析了书中所有算法的计算复杂性。关键术语和结论:每章最后列出关键术语和结论。关键术语只列出学生必须掌握的那些,而非该章中定义的每个术语。练习:书中包含很多练习题,涉及大量不同类型的问题。不仅提供了足够多的简单练习用于培养基本技能,还提供了大量的中等难度的练习和许多具有挑战性的练习。练习的叙述清晰而无歧义,并按难易程度进行了分级。练习还包含一些特殊的讨论来展开正文中没有涉及的新概念,使得学生能够通过自己的工作来发现新的想法。那些比平均难度稍难的练习用单个星号*标记,而那些相当有挑战性的练习则用两个星号**标记。需要用微积分来求解的练习也明确指出。而那些其结果要在正文中用到的练习则会明确地用指向右侧的手形符号来标识。本书最后给出了所有奇数编号练习的答案或解题纲要。解答通常包含那些大多数步骤写得很清楚的证明。复习题:每章最后都有一组复习题。设计这些问题是为了帮助学生重点学习该章最重要的概念和技术。要回答这些问题,学生必须写出较长的答案,而不是仅做一些计算或一个简答。补充练习:每章后面都有一组丰富而多样的补充练习。这些练习通常比每节后的练习难度更大些。补充练习强化该章中的概念,并把不同主题更有效地综合起来。计算机课题:每章后面还有一组计算机课题,这些计算机课题将学生在计算和离散数学中所学到的内容联系起来。对于那些从数学角度或程序设计角度来看其难度超过平均水平的计算机课题用一个星号*标记,而那些非常具有挑战性的则用两个星号**标记。计算和探索:每章的最后都有一组计算和探索性的问题。完成这些练习需要借助于现有的软件工具,如学生或教师自己编写的程序,或MapleTM或MathematicaTM这样的数学计算软件包。大部分这些练习为学生提供了通过计算来发现一些新事实或想法的机会(其中的一些练习在配套的在线练习册《探索离散数学》中也有讨论)。写作课题:每章后面都有一组写作课题。要完成这类课题学生需要参考数学文献。有些课题本质上是关于历史的,需要学生查找原始资料。有些课题则是通往新内容和新思想的途径。所有此类练习是要向学生展示正文中没有深入探讨的想法。这些课题把数学概念和写作过程结合起来,以帮助学生面对未来可能的研究领域(在线版或印刷版的《学生解题指南》中可以找到为这些课题准备的参考文献)。推荐读物:在附录后还提供了一组针对全书及各章的推荐读物。这些推荐读物包括难度不超过本书的书籍、更难些的书籍、阐述性的文章,以及发表离散数学新发现的原始文章。其中一些是多年前出版的经典读物,而另一些是在最近几年内才出版的。辅助资料《学生解题指南》:这本可以单独购买的学生手册包含了所有奇数编号练习的完整解答。这些解答解释了为什么要用某种特定的方法以及为什么这个方法管用。对于有些练习,还给出了一两种其他可能的解法以说明一个问题可以由多种不同方法来求解。本指南给出了为每章后面的写作课题推荐的参考文献,还包含撰写证明指南、离散数学学习中学生常犯错误的一般性描述,以及为每章提供的考试样例及解答以帮助学生准备考试。(ISBN-10∶0-07-735350-1)(ISBN-13:978-0-07-735350-6)《教师资源手册》:本手册在网站上有提供,教师也可以申请印刷版的。手册包含书中所有偶数编号练习的完整解答。给出了如何讲授本书每章内容的建议,包括每节中应强调的重点以及如何组织内容。手册还为每章提供了考试样例以及一个可供选择的包含1500多道考试题目的试题库。对于所有考试样例及试题库中的题目都给出了解答。最后,还给出了针对不同的侧重点以及学生能力水平的课程教学大纲样本。(ISBN-10∶0-07-735349-8)(ISBN-13:978-0-07-735349-0)致谢感谢各类学校中使用本书并向我提供有价值的反馈和有益的建议的许多教师和学生,他们的反馈才有可能使得本书更出色。特别感谢Jerrold Grossman、Jean-Claude Evard和Georgia Mederer,他们作为第7版的技术审阅,以其“鹰眼”般敏锐的目光确保了本书的准确性。我也很感激那些通过网站提交评论的人们所提供的帮助。感谢第7版以及前六版的评阅人,这些评阅人给予我许多有益的批评和鼓励,希望这一版不会辜负他们的期望。第7版评阅人Philip Barry 美国明尼苏达大学明尼阿波里斯分校Miklos Bona 美国佛罗里达大学Kirby Brown 美国皇后学院John Carter 加拿大多伦多大学Narendra Chaudhari 新加坡南洋理工大学Allan Cochran 美国阿肯色大学Daniel Cunningham 美国布法罗州立学院George Davis 美国佐治亚州立大学Andrzej Derdzinski 美国俄亥俄州立大学Ronald Dotzel 美国密苏里大学圣路易斯分校T.J.Duda 美国哥伦布州立社区学院Bruce Elenbogen 美国密歇根大学迪尔本分校Norma Elias 美国普渡大学卡鲁梅分校(哈蒙德) Herbert Enderton 美国加州大学洛杉矶分校Anthony Evans 美国莱特州立大学Kim Factor 美国马凯特大学Margaret

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.