新書推薦:
《
同工异曲:跨文化阅读的启示(修订版)(师承钱锺书先生,比较文学入门,体量小但内容丰,案例文笔皆精彩)
》
售價:NT$
199.0
《
牛津立法研究手册
》
售價:NT$
1630.0
《
制度为什么重要:政治科学中的新制度主义(人文社科悦读坊)
》
售價:NT$
290.0
《
梦醒子:一位华北乡居者的人生(1857—1942))(第2版)
》
售價:NT$
340.0
《
啊哈!原来如此(中译本修订版)
》
售價:NT$
290.0
《
部分识别入门——计量经济学的创新性方法
》
售價:NT$
345.0
《
东野圭吾:变身(来一场真正的烧脑 如果移植了别人的脑子,那是否还是我自己)
》
售價:NT$
295.0
《
推荐连接万物
》
售價:NT$
290.0
|
內容簡介: |
机器学习模型不能给出准确结果的原因有很多。从设计的角度来审视这些系统,我们能够深入理解其底层算法和可用的优化方法。本书为我们提供了机器学习设计过程的坚实基础,能够使我们为特定问题建立起定制的机器学习模型。我们可能已经了解或使用过一些为解决常见问题的商用机器学习模型,例如垃圾邮件检测或电影分级,但是要着手于解决更为复杂的问题,则其重点是让这些模型适用于我们自己特定的需求。
|
目錄:
|
CONTENTS
目录
译者序
前言
第1章 机器学习的思维1
1.1 人机界面1
1.2 设计原理4
1.2.1 问题的类型6
1.2.2 问题是否正确7
1.2.3 任务8
1.2.4 统一建模语言27
1.3 总结31
第2章 工具和技术32
2.1 Python与机器学习33
2.2 IPython控制台33
2.3 安装SciPy栈34
2.4 NumPy35
2.4.1 构造和变换数组38
2.4.2 数学运算39
2.5 Matplotlib41
2.6 Pandas45
2.7 SciPy47
2.8 Scikit-learn50
2.9 总结57
第3章 将数据变为信息58
3.1 什么是数据58
3.2 大数据59
3.2.1 大数据的挑战60
3.2.2 数据模型62
3.2.3 数据分布63
3.2.4 来自数据库的数据67
3.2.5 来自互联网的数据68
3.2.6 来自自然语言的数据70
3.2.7 来自图像的数据72
3.2.8 来自应用编程接口的数据72
3.3 信号74
3.4 数据清洗76
3.5 数据可视化78
3.6 总结80
第4章 模型—从信息中学习81
4.1 逻辑模型81
4.1.1 一般性排序83
4.1.2 解释空间84
4.1.3 覆盖空间86
4.1.4 PAC学习和计算复杂性87
4.2 树状模型88
4.3 规则模型92
4.3.1 有序列表方法94
4.3.2 基于集合的规则模型95
4.4 总结98
第5章 线性模型100
5.1 最小二乘法101
5.1.1 梯度下降102
5.1.2 正规方程法107
5.2 logistic回归109
5.3 多分类113
5.4 正则化115
5.5 总结117
第6章 神经网络119
6.1 神经网络入门119
6.2 logistic单元121
6.3 代价函数126
6.4 神经网络的实现128
6.5 梯度检验133
6.6 其他神经网络架构134
6.7 总结135
第7章 特征—算法眼中的世界136
7.1 特征的类型137
7.1.1 定量特征137
7.1.2 有序特征138
7.1.3 分类特征138
7.2 运算和统计139
7.3 结构化特征141
7.4 特征变换141
7.4.1 离散化143
7.4.2 归一化144
7.4.3 校准145
7.5 主成分分析149
7.6 总结151
第8章 集成学习152
8.1 集成学习的类型152
8.2 Bagging方法153
8.2.1 随机森林154
8.2.2 极端随机树155
8.3 Boosting方法159
8.3.1 AdaBoost161
8.3.2 梯度Boosting163
8.4 集成学习的策略165
8.5 总结168
第9章 设计策略和案例研究169
9.1 评价模型的表现169
9.2 模型的选择174
9.3 学习曲线176
9.4 现实世界中的案例研究178
9.4.1 建立一个推荐系统178
9.4.2 温室虫害探测185
9.5 机器学习一瞥188
9.6 总结190
|
內容試閱:
|
PREFACE
前言
机器学习是计算世界所见的最大趋势之一。机器学习系统具有意义深远且令人兴奋的能力,能够在各种应用领域为人们提供重要的洞察力,从具有开创性的挽救生命的医学研究到宇宙基础物理方面的发现,从为我们提供更健康、更清洁的食物到互联网分析和建立经济模型,等等。事实上,就某种意义而言,这项技术在我们的生活中已经无所不在。要想进入机器学习的领域,并且对其具有充分的认知,就必须能够理解和设计服务于某一项目需要的机器学习系统。
本书的主要内容
第1章从机器学习的基础知识开始,帮助你用机器学习的范式进行思考。你将学到机器学习的设计原理和相关模型。
第2章讲解了Python中众多针对机器学习任务的程序包。本章会让你初步了解一些大型库,包括NumPy、SciPy、Matplotlib和Scilit-learn等。
第3章讲解了原始数据可能有多种不同格式,其数量和质量也可能各不相同。有时,我们会被数据淹没;而有时,我们希望从数据中榨取最后一滴信息。数据要成为信息,需要有意义的结构。本章我们介绍了一些宽泛的主题,如大数据、数据属性、数据源、数据处理和分析等。
第4章在逻辑模型中探索了逻辑语言,并创建了假设空间映射;在树状模型中,我们发现其具有广泛作用域并易于描述和理解;在规则模型中,我们讨论了基于有序规则列表和无序规则集的模型。
第5章介绍了线性模型,它是使用最广泛的模型之一。线性模型是众多高级非线性技术的基础,例如,支持向量机(SVM)和神经网络。本章还研究了机器学习最常用的技术,创建线性回归和logistic回归的假设语句。
第6章介绍了机器学习最强大的人工神经网络算法。我们将看到这些网络如何成为大脑神经元的简化模型。
第7章讨论了特征的不同类型,即定量特征、有序特征和分类特征。我们还将详细学习如何结构化和变换特征。
第8章解释了集成机器学习背后的动机和成因,其来源于清晰的直觉并具有丰富的理论历史基础。集成机器学习的类型在于模型本身,以及围绕着三个主要问题(如何划分数据、如何选择模型、如何组合其结果)的考量。
第9章着眼于一些设计策略,以确保你的机器学习系统最优。我们将学习模型选择和参数调优技术,并将所学知识应用于一些案例研究之中。
阅读前的准备工作
你需要有学习机器学习的意愿,并需要下载安装Python 3。Python 3的下载地址是:https:www.python.orgdownloads 。
本书的读者对象
本书的读者包括数据学家、科学家,或任何好奇的人。你需要具备一些线性代数和Python编程的基础,对机器学习的概念有基本了解。
|
|