新書推薦:
《
中国古代鬼神录
》
售價:NT$
866.0
《
投机苦旅:一位投机客的凤凰涅槃
》
售價:NT$
403.0
《
重返马赛渔场:社会规范与私人治理的局限
》
售價:NT$
316.0
《
日子慢慢向前,事事慢慢如愿
》
售價:NT$
254.0
《
场景供应链金融:将风口变成蓝海
》
售價:NT$
509.0
《
汗青堂丛书146·布鲁克王朝:一个英国家族在东南亚的百年统治
》
售價:NT$
418.0
《
人生是旷野啊
》
售價:NT$
332.0
《
甲骨文丛书· “安国之道”:英国的殖民情报系统及其在亚洲的扩张
》
售價:NT$
403.0
|
編輯推薦: |
囊括了已经举办的八届竞赛的预赛和决赛试题及答案,以便于读者了解竞赛命题的难易程度和命题走向。汇集整理了各类竞赛题目,为读者扩展了视野,提高了处理难题的技能和技巧。
|
內容簡介: |
本书共分为3部分.第1部分的内容是八届预赛试题及答案;第2部分为考点直击,针对考试大纲对每个专题进行考点直击,包括考点综述、解题方法点拨和竞赛例题;第3部分为八届决赛试题
|
目錄:
|
中国大学生数学竞赛大纲(初稿)1第1部分八届预赛试题及参考答案首届全国大学生数学竞赛预赛2009年非数学类6第二届全国大学生数学竞赛预赛2010年非数学类10第三届全国大学生数学竞赛预赛2011年非数学类15第四届全国大学生数学竞赛预赛2012年非数学类19第五届全国大学生数学竞赛预赛2013年非数学类24第六届全国大学生数学竞赛预赛2014年非数学类28第七届全国大学生数学竞赛预赛2015年非数学类32第八届全国大学生数学竞赛预赛2016年非数学类36第2部分考点直击第1章函数极限连续421.1函数421.1.1考点综述和解题方法点拨421.1.2竞赛例题421.1.3模拟练习题11431.2极限441.2.1考点综述和解题方法点拨441.2.2竞赛例题461.2.3模拟练习题12491.3连续与间断491.3.1考点综述和解题方法点拨491.3.2竞赛例题501.3.3模拟练习题1353第2章微分学542.1一元函数微分学542.1.1考点综述和解题方法点拨542.1.2竞赛例题582.1.3模拟练习题21822.2多元函数微分学822.2.1考点综述和解题方法点拨822.2.2竞赛例题882.2.3模拟练习题2297第3章积分学983.1不定积分983.1.1考点综述和解题方法点拨983.1.2竞赛例题993.1.3模拟练习题311043.2定积分1043.2.1考点综述和解题方法点拨1043.2.2竞赛例题1083.2.3模拟练习题321363.3二重积分1373.3.1考点综述和解题方法点拨1373.3.2竞赛例题1393.3.3模拟练习题331493.4三重积分1503.4.1考点综述和解题方法点拨1503.4.2竞赛例题1523.4.3模拟练习题341573.5第一类曲线积分1573.5.1考点综述和解题方法点拨1573.5.2竞赛例题1583.5.3模拟练习题351603.6第二类曲线积分1603.6.1考点综述和解题方法点拨1603.6.2竞赛例题1623.6.3模拟练习题361713.7第一类曲面积分1723.7.1考点综述和解题方法点拨1723.7.2竞赛例题1733.7.3模拟练习题371753.8第二类曲面积分1753.8.1考点综述和解题方法点拨1753.8.2竞赛例题1783.8.3模拟练习题38184第4章微分方程1854.1一阶微分方程1854.1.1考点综述和解题方法点拨1854.1.2竞赛例题1864.1.3模拟练习题411954.2可降阶的二阶微分方程1954.2.1考点综述和解题方法点拨1954.2.2竞赛例题1964.2.3模拟练习题421974.3线性微分方程1974.3.1考点综述和解题方法点拨1974.3.2竞赛例题1994.3.3模拟练习题 43206第5章无穷级数2085.1数项级数2085.1.1考点综述和解题方法点拨2085.1.2竞赛例题2095.1.3模拟练习题512215.2幂级数2225.2.1考点综述和解题方法点拨2225.2.2竞赛例题2235.2.3模拟练习题522385.3傅里叶级数2385.3.1考点综述和解题方法点拨2385.3.2竞赛例题2405.3.3模拟练习题53241第6章向量代数与空间解析几何2426.1向量及其运算2426.1.1考点综述和解题方法点拨2426.1.2竞赛例题2436.1.3模拟练习题612446.2空间平面和直线2446.2.1考点综述和解题方法点拨2446.2.2竞赛例题2466.2.3模拟练习题622486.3空间曲面和曲线2486.3.1考点综述和解题方法点拨2486.3.2竞赛例题2506.3.3模拟练习题63254模拟练习题参考答案255第3部分八届决赛试题及参考答案第一届全国大学生数学竞赛决赛2010年非数学类288第二届全国大学生数学竞赛决赛2011年非数学类294第三届全国大学生数学竞赛决赛2012年非数学类299第四届全国大学生数学竞赛决赛2013年非数学类303第五届全国大学生数学竞赛决赛2014年非数学类307第六届全国大学生数学竞赛决赛2015年非数学类311第七届全国大学生数学竞赛决赛2016年非数学类315第八届全国大学生数学竞赛决赛2017年非数学类319参考文献324
|
內容試閱:
|
自2009年10月开始至今全国大学生数学竞赛已经成功举办了八届,竞赛面向全国本科生,是一项全国性的高水平学科竞赛,为青年学子提供了展示数学特长的舞台,也为发现和选拔优秀数学人才积累了资源.随着数学竞赛持续深入开展,参赛学生越来越多,规模越来越大,参赛学子对数学竞赛资料的需求也越来越大.但是关于数学竞赛专门的资料寥寥几部且内容偏少、没有更新,满足不了广大参赛学生的需求,因此我们着手编写这本《全国大学生数学竞赛辅导指南》.该指南是针对非数学专业的全国大学生数学竞赛编写的,它可供参加数学竞赛的师生作为应试教程,也可以供各类高校的大学生作为学习高等数学和考研的参考书,还可以作为教师的教学参考用书.《全国大学生数学竞赛辅导指南》全书分为3个部分,第1部分是从2009年的首届到2016年的第八届预赛试题及解答,内容全面;第2部分为考点直击,这一部分分为6章函数极限连续、微分学、积分学、微分方程、无穷级数、向量代数与空间解析几何,每章里面包含若干节,每节给出考试要求并对考点进行分析综述,给出相关的出题方式和解题点拨,有利于考生有效地提高数学水平;第3部分给出八届决赛试题,开阔读者视野.本书是迄今为止内容最全面丰富的一本竞赛参考资料.鉴于作者水平有限,编写时间比较仓促,书中难免有不当之处,敬请各位专家、读者批评指正,便于以后改版修订.张天德2017年3月
中国大学生数学竞赛大纲初稿中国大学生数学竞赛大纲初稿中国大学生数学竞赛大纲初稿为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现中国大学生数学竞赛的目标,特制订本大纲.一、 竞赛的性质和参赛对象中国大学生数学竞赛的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才.中国大学生数学竞赛的参赛对象为大学本科二年级及二年级以上的在校大学生.二、 竞赛的内容中国大学生数学竞赛竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性含左连续与右连续、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理.二一元函数微分学1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6.洛必达LHospital法则与求未定式极限.7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线水平、铅直和斜渐近线、函数图形的描绘.8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径.三一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、 牛顿莱布尼茨NewtonLeibniz公式.4.不定积分和定积分的换元积分法与分部积分法.5.有理函数、三角函数的有理式和简单无理函数的积分.6.广义积分.7.定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四常微分方程1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2.变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利Bernoulli方程、全微分方程.3.可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:yn=fx,y=fx,y,y=fy,y.4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积.7.欧拉Euler方程.8.微分方程的简单应用.五向量代数和空间解析几何1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件,点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算直角坐标、极坐标、三重积 分的计算直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算,两类曲线积分的关系.3.格林Green公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算,两类曲面积分的关系.5.高斯Gauss公式、斯托克斯Stokes公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等.八无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨Leibniz判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间指开区间、收敛域与和函数.6.幂级数在其收敛区间内的基本性质和函数的连续性、逐项求导和逐项积分、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶Fourier系数与傅里叶级数、狄利克雷Dirichlet定理、函数在\[-1,1\]上的傅里叶级数、函数在\[0,1\]上的正弦级数和余弦级数.[]第1部分八届预赛试题及参考答案第1部分八届预赛试题及参考答案首届全国大学生数学竞赛预赛2009年非数学类首届全国大学生数学竞赛预赛2009年非数学类〖1〗试题一、 填空题本题共4个小题,每题5分,共20分(1)计算Dx yln1 y〖〗x〖〗1-x-ydxdy=,其中区域D是由直线x y=1与两坐标轴所围三角形区域.(2)设fx是连续函数,且满足fx=3x2-20fxdx-2,则fx=.(3)曲面z=x2〖〗2 y2-2平行平面2x 2y-z=0的切平面方程是.(4)设函数y=yx由方程xefy=eyln29确定,其中f具有二阶导数,且f1,则d2y〖〗dx2=.〖=H〗二、 〖=B〗(5分)求极限limx0ex e2x enx〖〗ne〖〗x,其中n是给定的正整数.〖=H〗三、 〖=B〗(15分)设函数fx连续,gx=10fxtdt,且limx0fx〖〗x=A,A为常数,求gx并讨论gx在x=0处的连续性.〖=H〗四、 〖=B〗(15分)已知平面区域D={x,y|0x,0y},L为D的正向边界,试证:(1)∮Lxesinydy-ye-sinxdx=∮Lxe-sinydy-yesinxdx;(2)∮Lxesinydy-ye-sinxdx5〖〗22.〖=H〗五、 〖=B〗(10分)已知y1=xex e2x,y2=xex e-x,y3=xex e2x-e-x是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.〖=H〗六、 〖=B〗(10分)设抛物线y=ax2 bx 2lnc过原点,当0x1时,y0,又已知该抛物线与x轴及直线x=1所围图形的面积为1〖〗3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.〖=H〗七、 〖=B〗(15分)已知unx满足unx=unx xn-1ex,n=1,2,,且un1=e〖〗n,求函数项级数SymboleB@〖〗n=1unx之和.〖=H〗八、 〖=B〗(10分)求x1-时,与SymboleB@〖〗n=0xn2等价的无穷大量.参 考 答 案〖=H〗一、 〖=B〗(1)16〖〗15.(2)3x2-10〖〗3.(3)2x 2y-z-5=0. (4)-[1-fy]2-fy〖〗x2[1-fy]3.〖=H〗二、 解〖=B〗原式〖〗=limx0expe〖〗xlnex e2x enx〖〗n=explimx0elnex e2x enx-lnn〖〗x,其中大括号内的极限是0〖〗0型未定式,由洛必达法则,有limx0elnex e2x enx-lnn〖〗x〖〗=limx0eex 2ex nenx〖〗ex e2x enx=e1 2 n〖〗n=n 1〖〗2e,于是原式=en 1〖〗2e.〖=H〗三、 解〖=B〗由题设,知f0=0,g0=0.令u=xt,得gx=x0fudu〖〗x,x0.而gx=xfx-x0fudu〖〗x2,x0.由导数的定义有g0=limx0x0fudu〖〗x2=limx0fx〖〗2x=A〖〗2.另外limx0gx=limx0xfx-x0fudu〖〗x2=limx0fx〖〗x-limx0x0fudu〖〗x2=A-A〖〗2=A〖〗2=g0.从而知gx在x=0处连续.〖=H〗四、 证法1〖=B〗由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.(1)左边=0esinydy-0e-sinxdx=0esinx e-sinxdx,右边=0e-sinydy-0esinxdx=0esinx e-sinxdx,所以∮Lxesinydy-ye-sinxdy=∮Lxe-sinydy-yesinxdx.(2)由泰勒公式得esinx e-sinx2 sin2x,故∮Lxesinydy-ye-sinxdx=0esinx e-sinxdx02 sin2xdx=5〖〗22.〖=H〗证法2〖=B〗(1)根据格林公式,将曲线积分化为区域D上的二重积分∮Lxesinydy-ye-sinxdx=Desiny e-sinyd,∮Lxe-sinydy-yesinxdx=De-siny esinyd.因为关于y=x对称,所以Desiny e-sinyd=De-siny esinyd,故∮Lxesinydy-ye-sinxdx=∮Lxe-sinydy-yesinxdx.(2)由et e-t=2SymboleB@〖〗n=0t2n〖〗2n!2 t2,有∮Lxesinydy-ye-sinxdx=Desiny e-sinxd=Desinx e-sinxd5〖〗22.〖=H〗五、 解〖=B〗根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.〖=H〗解法1〖=B〗设此方程式为y-y-2y=fx.将y=xex代入上式,得fx=xex-xex-2xex=2ex xex-ex-xex-2xex=ex-2xex,因此所求方程为y-y-2y=ex-2xex.〖=H〗解法2〖=B〗设y=xex c1e2x c2e-x是所求方程的通解,由y=ex xex 2c1e2x-c2e-x,y=2ex xex 4c1e2x c2e-x,消去c1,c2得所求方程为y-y-2y=ex-2xex.〖=H〗六、 解〖=B〗因抛物线过原点,故c=1.由题设有10ax2 bxdx=a〖〗3 b〖〗2=1〖〗3,即b=2〖〗31-a,而V=10ax2 bx2dx=1〖〗5a2 1〖〗2ab 1〖〗3b2=1〖〗5a2 1〖〗3a1-a 1〖〗34〖〗91-a2.令dV〖〗da=2〖〗5a 1〖〗3-2〖〗3a-8〖〗271-a=0,得a=-5〖〗4,代入b的表达式得b=3〖〗2,所以y0.又因d2V〖〗da2a=-5〖〗4=2〖〗5-2〖〗3 8〖〗27=4〖〗1350及实际情况,当a=-5〖〗4,b=3〖〗2,c=1时,体积最小.〖=H〗七、 解〖=B〗先解一阶常系数微分方程,求出unx的表达式,然后再求SymboleB@〖〗n=1unx的和.由已知条件可知unx-unx=xn-1ex是关于unx的一个一阶常系数线性微分方程,故其通解为unx=edxxn-1exe-dxdx c=exxn〖〗n c.由条件un1=e〖〗n,得c=0,故unx=xnex〖〗n,从而SymboleB@〖〗n=1unx=SymboleB@〖〗n=1xnex〖〗n=exSymboleB@〖〗n=1xn〖〗n.sx=SymboleB@〖〗n=1xn〖〗n,其收敛域为[-1,1,当x-1,1时,有sx=SymboleB@〖〗n=1xn-1=1〖〗1-x,故sx=x01〖〗1-tdt=-ln1-x.当x=-1时SymboleB@〖〗n=1unx=-e-1ln2.于是,当-1x0,求In= SymboleB@0e-sxxndxn=1,2,.(4)设函数ft有二阶连续导数,r=x2 y2,gx,y=f1〖〗r,求2g〖〗x2 2g〖〗y2.(5)求直线l1:x-y=0,z=0与直线l2:x-2〖〗4=y-1〖〗-2=z-3〖〗-1的距离.〖=H〗二、 〖=B〗(15分)设函数fx在-SymboleB@, SymboleB@上具有二阶导数,并且fx0,limx SymboleB@fx=0,limx-SymboleB@fx=-1所确定,且d2y〖〗dx2=3〖〗41 t,其中t具有二阶导数,曲线y=t与y=t21e-u2du 3〖〗2e在t=1处相切.求函数t.〖=H〗四、 〖=B〗(15分)设an0,Sn=n〖〗k=1ak,证明:(1)当1时,级数 SymboleB@〖〗n=1an〖〗Sn收敛;(2)当1,且SnSymboleB@nSymboleB@时,级数 SymboleB@〖〗n=1an〖〗Sn发散.〖=H〗五、 〖=B〗(15分)设l是过原点、方向为,,(其中2 2 2=1的直线,均匀椭球x2〖〗a2 y2〖〗b2 z2〖〗c21(其中0
|
|