登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

『簡體書』深度学习:一起玩转TensorLayer

書城自編碼: 3110841
分類: 簡體書→大陸圖書→計算機/網絡人工智能
作 者: 董豪等
國際書號(ISBN): 9787121326226
出版社: 电子工业出版社
出版日期: 2018-01-01
版次: 1
頁數/字數: 340/
書度/開本: 128开 釘裝: 平装

售價:NT$ 644

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
古文观止(上+下)(2册)高中生初中生阅读 国学经典丛书原文+注释+译文古诗词大全集名家精译青少年启蒙经典读本无障碍阅读精装中国古代著名文学书籍国学经典
《 古文观止(上+下)(2册)高中生初中生阅读 国学经典丛书原文+注释+译文古诗词大全集名家精译青少年启蒙经典读本无障碍阅读精装中国古代著名文学书籍国学经典 》

售價:NT$ 440.0
问物:可触摸的意义
《 问物:可触摸的意义 》

售價:NT$ 375.0
宠物革命:动物与现代英国生活的形成
《 宠物革命:动物与现代英国生活的形成 》

售價:NT$ 360.0
世界杂货店:罗伯特·谢克里科幻小说集(新版)
《 世界杂货店:罗伯特·谢克里科幻小说集(新版) 》

售價:NT$ 340.0
(棱镜精装人文译丛)蔑视大众:现代社会文化斗争的实验
《 (棱镜精装人文译丛)蔑视大众:现代社会文化斗争的实验 》

售價:NT$ 275.0
皇家宫廷中的保健秘方 中小学课外阅读
《 皇家宫廷中的保健秘方 中小学课外阅读 》

售價:NT$ 290.0
《诗经》十五讲 十五堂《诗经》历史文化与文学课  丹曾人文通识丛书
《 《诗经》十五讲 十五堂《诗经》历史文化与文学课 丹曾人文通识丛书 》

售價:NT$ 395.0
述异记汇笺及情节单元分类研究(上下册)
《 述异记汇笺及情节单元分类研究(上下册) 》

售價:NT$ 475.0

建議一齊購買:

+

NT$ 423
《 深度学习框架PyTorch:入门与实践 》
+

NT$ 579
《 TensorFlow深度学习应用实践 》
+

NT$ 514
《 深入浅出强化学习:原理入门 》
+

NT$ 353
《 人工智能简史 》
+

NT$ 706
《 Scikit-Learn与TensorFlow机器学习实用指南(影印版)(英文版) 》
+

NT$ 569
《 深度学习入门之PyTorch 》
編輯推薦:
1.TensorLayer是一个基于TensorFlow的深度学习开发工具。其透明,灵活,高性能的特点,使得它得到了大量初学者乃至资深开发者的青睐。TensorLayer获得了ACM Multimedia颁发的2017年度*开源软件奖。
2.本书是在帝国理工学院计算机系终身教授郭毅可的领导下,由TensorLayer创始人领衔,TensorLayer主要开发团队倾力打造而成,作者全部来自一线人工智能研究员和工程师,为读者提供了一次非常美妙的AI之旅。
3.本书案例是作者们经过精心挑选后写作的,其中不乏诸如,价值上亿美金的超高分辨率复原、已实际应用在医学上的图像语义分割等黄金案例,值得初学者和研究者们学习参考。
4.本书作者额外提供了案例使用的模型,请到www.broadview.com.cn下载使用。
內容簡介:
本书由TensorLayer作者领衔写作,TensorLayer社区众包完成,作者全部来自一线人工智能研究员和工程师,内容不仅覆盖了传统书籍都有的多层网络、卷积网络、递归网络及增强学习等,还着重讲解了生成对抗网络、学习方法和实践经验,配有若干产品级别的实例。者将会从零学会目前*深度学习,以及使用TL实现各种应用。
關於作者:
董豪:目前就读于帝国理工学院,从事计算机视觉、医疗数据分析和深度学习理论研究,在ICCV、TNSRE、TIFS、ACM MM等顶级会议和期刊发表过论文,Neurocomputing、TIP等会议和期刊的审稿人。有创业经验,擅长把深度学习算法与实际问题结合,获得多项国家发明专利和实用新型专利,TensorLayer创始人。郭毅可:英国帝国理工学院计算系终身教授,帝国理工数据科学研究所(Data Science Institute)所长,上海大学计算机学院院长,中国计算机协会大数据专委会创始会员。郭教授主持多项中国、欧盟和英国大型数据科学项目,累计总金额达1000亿人民币。郭教授的研究重点为机器学习、云计算、大数据和生物信息学。也是大数据会议KDD2018的主席。他是上海,北京,江苏省政府特聘专家,中国科学院网络信息中心、中国科学院深圳先进技术研究院客座研究员。郭教授从2015年起,发起和领导了TensorLayer项目作为帝国理工数据科学研究所的重要机器学习工具。杨光:帝国理工医学院高级研究员,皇家布朗普顿医院医学图像分析师,伦敦大学圣乔治医学院荣誉讲师,伦敦大学学院(UCL)硕士、博士、IEEE会员、SPIE会员、ISMRM会员、BMVA会员,专注于医疗大数据以及医学图像的成像和分析,在各类期刊会议上发表论文近40篇,国际专利两项,Medical Physics杂志临时副主编,MIUA会议委员会委员,长期为专业杂志会议义务审稿50余篇。其研究方向获得英国EPSRC、CRUK、NIHR和British Heart Foundation (BHF)资助。近期致力于Medical AI方向的创新创业。吴超:帝国理工数字科学研究所研究员,主要从事医疗和城市领域数据分析和建模的研究工作,研究工作获得EPSRC、Royal Society等多项研究基金资助。王剑虹:帝国理工硕士及利物浦大学本科毕业,主要研究语音识别分类问题;目前在UCL攻读研究型硕士,主要研究增强学习在游戏中的运用。 幺忠玮:帝国理工硕士,本科毕业于北京邮电大学,主要研究方向为计算机视觉,对生成模型和目标识别领域感兴趣。目前致力于将目标检测算法植入嵌入式系统实现即时检测。张敬卿:帝国理工博士在读,研究型硕士,主要研究兴趣包括深度学习、数据挖掘、时间序列与文本挖掘、多模态问题与生成模型。本科毕业于清华大学计算机科学与技术系,曾获得中国国家奖学金。陈?f:北京大学光华管理学院在读,哈尔滨工业大学电子与信息工程学院毕业,深度学习爱好者。林一鸣:帝国理工博士在读,主要研究深度学习在人脸分析方向的应用。于思淼:帝国理工博士在读,浙江大学本科毕业,主要研究方向为深度学习、生成模型及其在计算机视觉方面的应用。莫元汉:帝国理工博士在读,北京航空航天大学本科毕业,主要研究方向为深度学习、动力学及其在医疗图像分析方面的应用。袁航:瑞士洛桑联邦理工(EPFL)硕士在读,本科就读于德国雅各布大学(Jacobs)计算机系,及在美国卡内基梅隆大学(CMU)计算机科学学院交换学习,主要从事计算神经科学与电脑人机接口研究。之前分别在帝国理工及马克斯普朗克智能系统研究院(Max Planck Institute for Intelligent Systems)进行研习,现在主要在EPFL G-lab研究脊髓修复对运动功能康复及血压控制等课题。
目錄
1 深度学习简介1
1.1 人工智能、机器学习和深度学习. . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 人工智能、机器学习和深度学习三者的关系. . . . . . . . . . . . 2
1.2 神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 感知器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 损失函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 梯度下降和随机梯度下降. . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 反向传播算法简述. . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.6 其他神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 学习方法建议. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 网络资源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 TensorFlow 官方深度学习教程. . . . . . . . . . . . . . . . . . . . 14
1.3.3 开源社区. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 TensorLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 深度学习框架概况. . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 TensorLayer 概括. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 实验环境配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 多层感知器19
2.1 McCulloch-Pitts 神经元模型. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 人工神经网络到底能干什么?到底在干什么. . . . . . . . . . . . 21
2.1.2 什么是激活函数?什么是偏值. . . . . . . . . . . . . . . . . . . . 22
2.2 感知器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 什么是线性分类器. . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 线性分类器有什么优缺点. . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 感知器实例和异或问题(XOR 问题) . . . . . . . . . . . . . . . 26
2.3 多层感知器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 实现手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 什么是过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.3 批规范化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.4 L1、L2 和其他正则化方法. . . . . . . . . . . . . . . . . . . . . . 42
2.5.5 Lp 正则化的图形化解释. . . . . . . . . . . . . . . . . . . . . . . 44
2.6 再实现手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 数据迭代器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2 通过all_drop 启动与关闭Dropout . . . . . . . . . . . . . . . . 47
2.6.3 通过参数共享实现训练测试切换. . . . . . . . . . . . . . . . . . 50
3 自编码器54
3.1 稀疏性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 稀疏自编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 实现手写数字特征提取. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 降噪自编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 再实现手写数字特征提取. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 堆栈式自编码器及其实现. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 卷积神经网络80
4.1 卷积原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.1 卷积操作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 张量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.3 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.4 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.5 全连接层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 经典任务. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 图像分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 目标检测. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.3 语义分割. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.4 实例分割. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 经典卷积网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 实现手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 数据增强与规范化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 数据增强. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.2 批规范化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.3 局部响应归一化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 实现CIFAR10 分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.1 方法1:tl.prepro 做数据增强. . . . . . . . . . . . . . . . . . . . . 108
4.6.2 方法2:TFRecord 做数据增强. . . . . . . . . . . . . . . . . . . . 114
4.7 反卷积神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5 词的向量表达121
5.1 目的与原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Continuous Bag-Of-Words(CBOW)模型. . . . . . . . . . . . . 124
5.2.3 Skip Gram(SG)模型. . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.4 Hierarchical Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.5 Negative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3 实现Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.1 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.2 实现. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4 重载预训练矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6 递归神经网络148
6.1 为什么需要它. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 不同的RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.1 简单递归网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.2 回音网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 长短期记忆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.1 LSTM 概括. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 LSTM 详解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.3 LSTM 变种. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4 实现生成句子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.1 模型简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.2 数据迭代. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.3 损失函数和更新公式. . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4.4 生成句子及Top K 采样. . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.5 接下来还可以做什么. . . . . . . . . . .
內容試閱
深度学习已经成为了当今人工智能发展的主要助力,国务院印发的《新一代人工智能发展规划》中表示,2020年我国人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元;2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。
为此产业界急需大量实用性人才,而深度学习是一门理论与工程相结合的科学,本书将以通俗易懂的方式讲解深度学习技术,并辅以实践教学。本书同时面向深度学习初学者、进阶者及工程师,内容涵盖了全连接网络、自编码器、卷积神经网络、递归神经网络、深度增强学习、生成对抗网络等,并附有多个进阶实例教程。与传统深度学习书籍相比,本书有以下特点。

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.