新書推薦:
《
学术的中心:英法德美
》
售價:NT$
398.0
《
为什么要读人类学
》
售價:NT$
352.0
《
井邑无衣冠 : 地方视野下的唐代精英与社会
》
售價:NT$
434.0
《
星地融合移动通信系统与关键技术从5G NTN到6G的卫星互联网发展
》
售價:NT$
968.0
《
妈妈,你好吗?(一封写给妈妈的“控诉”信,日本绘本奖作品)
》
售價:NT$
194.0
《
保守主义:为传统而战
》
售價:NT$
704.0
《
不同境遇的36岁:无尽与有限+人生半熟
》
售價:NT$
510.0
《
小时光 油画棒慢绘零基础教程
》
售價:NT$
403.0
|
編輯推薦: |
1.全景:囊括GAN起源、发展和演变的全貌;2.插图:100余幅插图,图说GAN的原理;3.实战:10余种有代表性的GAN案例代码
|
內容簡介: |
生成对抗神经网络(Generative Adversarial Nets,GAN)作为一种深度学习框架,发展十分迅猛。通过相互对抗的神经网络模型,GAN能够生成结构复杂且十分逼真的高维度数据。因此,被广泛应用于学术研究和工程领域,包括图像处理,如图像生成、图像转换、视频合成;序列数据生成,如语音生成、音乐生成等;以及其他众多领域,如迁移学习、医学图象细分、隐写术、持续学习(深度学习重放)等。
GAN的技术较为复杂,细分领域众多,发展十分迅猛,因此,需要一个科学有效的学习方法。首先,需要了解GAN的全景,对GAN的发展脉络和各个细分领域都有所了解,在面对各种各样的应用场景时能够胸有成竹。其次,掌握生成对抗的基本原理,以及实现生成对抗的关键技术,在面对GAN领域出现的各种新理念、新技术时能够追本溯源,从容应对。后,再针对关键的GAN进行深入研究。《GAN生成对抗神经网络原理与实践》正是按照上述方式来组织的。让有志于学习研究GAN的读者快速入门并掌握GAN的关键技术,是写作《GAN生成对抗神经网络原理与实践》的初衷。
|
關於作者: |
李明军,毕业于华北理工大学,曾就职于中国惠普、神州泰岳和亿阳信通。近十余年,从事大数据分析、人工智能等相关领域的工作。在知乎上发表过多篇技术文章,对大数据分析、人工智能、数据治理有着丰富的经验。著有《TensorFlow深度学习实战大全》。
|
目錄:
|
第1章 生成对抗神经网络综述 1
1.1 什么是生成对抗神经网络? 2
1.2 为什么要学习GAN? 5
1.3 应用场景 9
1.4 技术难点 18
1.5 潜在空间的处理 22
1.6 第一个GAN实战 27
第2章 TensorFlow 2.0安装 39
2.1 通过Docker安装 40
2.2 通过conda安装 41
第3章 神经网络原理 43
3.1 应用场景简介 44
3.2 深层神经网络简介 46
3.3 卷积神经网络简介 53
3.4 反卷积神经网络简介 61
第4章 TensorFlow 2.0开发入门 65
4.1 开发环境 66
4.2 张量 68
4.3 Keras开发概览 72
4.4 使用函数接口开发 87
4.5 网络层 99
4.6 激活函数 104
4.7 损失函数 108
4.8 优化器 110
第5章 常用数据集 112
5.1 MNIST 113
5.2 Fashion-MNIST 115
5.3 CIFAR-10 118
5.4 CIFAR-100 120
第6章 DCGAN 123
6.1 DCGAN概述 124
6.2 批量标准化 124
6.3 使用多种激活函数 125
6.4 在MNIST数据集上的实现 126
6.5 在LSUN数据集上的实现 139
第7章 CGAN 148
7.1 CGAN概述 149
7.2 在MNIST数据集上的实现 153
第8章 InfoGAN 179
8.1 技术原理 180
8.2 模型实现技巧 183
8.3 在MNIST数据集上的实现 185
8.4 在Fashion MNIST数据集上
的实现 201
第9章 SGAN 204
9.1 技术原理 205
9.2 模型训练 207
9.3 SGAN在MNIST数据集上的
实现 210
9.4 SGAN在CIFAR数据集上的
实现 242
第10章 CycleGAN 267
10.1 CycleGAN简介 268
10.2 技术原理 268
10.3 技术实现 270
|
|