新書推薦:
《
精致考古--山东大学实验室考古项目论文集(一)
》
售價:NT$
1112.0
《
从天下到世界——国际法与晚清中国的主权意识
》
售價:NT$
347.0
《
血色帝国:近代英国社会与美洲移民
》
售價:NT$
265.0
《
海外中国研究·王羲之:六朝贵族的世界(艺术系列)
》
售價:NT$
811.0
《
唐宋绘画史 全彩插图版
》
售價:NT$
449.0
《
海洋、岛屿和革命:当南方遭遇帝国(文明的另一种声音)
》
售價:NT$
485.0
《
铝合金先进成型技术
》
售價:NT$
1214.0
《
《全面与进步跨太平洋伙伴关系协定》国有企业条款研究
》
售價:NT$
449.0
|
編輯推薦: |
Python深度学习“四大名著”之一全新PyTorch版 PyTorch核心维护者Dmytro Dzhulgakov亲笔作序推荐 从初学者角度,带你全面了解现代机器学习技术并从零开始动手实践
|
內容簡介: |
本书是一本在PyTorch环境下学习机器学习和深度学习的综合指南,可以作为初学者的入门教程,也可以作为读者开发机器学习项目时的参考书。
本书讲解清晰、示例生动,深入介绍了机器学习方法的基础知识,不仅提供了构建机器学习模型的说明,而且提供了构建机器学习模型和解决实际问题的基本准则。 本书添加了基于PyTorch的深度学习内容,介绍了新版Scikit-Learn。本书涵盖了多种用于文本和图像分类的机器学习与深度学习方法,介绍了用于生成新数据的生成对抗网络(GAN)和用于训练智能体的强化学习。后,本书还介绍了深度学习的新动态,包括图神经网络和用于自然语言处理(NLP)的大型transformer。 无论是机器学习入门新手,还是计划跟踪机器学习进展的研发人员,都可以将本书作为使用Python进行机器学习的不二之选。
学完本书,你将能够:
探索机器从数据中“学习”的框架、模型和方法。
使用Scikit-Learn实现机器学习,使用PyTorch实现深度学习。
训练机器学习分类器分类图像、文本等数据。
构建和训练神经网络、transformer及图神经网络。
探索评估和优化模型的方法。
使用回归分析预测连续目标结果。
使用情感分析深入地挖掘文本和社交媒体数据。
|
關於作者: |
塞巴斯蒂安·拉施卡 (Sebastian Raschka) 获密歇根州立大学博士学位,现在是威斯康星-麦迪逊大学统计学助理教授,从事机器学习和深度学习研究。他的研究方向是数据受限的小样本学习和构建预测有序目标值的深度神经网络。他还是一位开源贡献者,担任Grid.ai的首席AI教育家,热衷于传播机器学习和AI领域知识。
刘玉溪(海登) [ Yuxi (Hayden) Liu ] 在谷歌公司担任机器学习软件工程师,曾担任机器学习科学家。他是一系列机器学习书籍的作者。他的本书Python Machine Learning By Example在2017年和2018年亚马逊同类产品中排名,已被翻译成多种语言。
瓦希德·米尔贾利利 (Vahid Mirjalili) 获密歇根州立大学机械工程和计算机科学双博士学位,是一名专注于计算机视觉和深度学习的科研工作者。
|
目錄:
|
CONTENTS
目 录
译者序
序
前言
作者简介
审校者简介
第1章 赋予计算机从数据中学习的能力1
1.1 将数据转化为知识的智能系统1
1.2 三种机器学习类型2
1.2.1 用于预测未来的监督学习2
1.2.2 解决交互问题的强化学习4
1.2.3 发现数据中隐藏规律的无监督学习 5
1.3 基本术语与符号6
1.3.1 本书中使用的符号和约定6
1.3.2 机器学习术语8
1.4 构建机器学习系统的路线图8
1.4.1 数据预处理——让数据可用8
1.4.2 训练和选择预测模型9
1.4.3 使用未见过的数据对模型进行评估10
1.5 使用Python实现机器学习算法10
1.5.1 从Python Package Index中安装Python和其他软件包10
1.5.2 使用Anaconda Python
软件包管理器11
1.5.3 科学计算、数据科学和机器学习软件包12
1.6 本章小结13
第2章 训练简单的机器学习分类算法14
2.1 人工神经元——机器学习早期历史一瞥14
2.1.1 人工神经元的定义15
2.1.2 感知机学习规则16
2.2 使用Python实现感知机学习算法19
2.2.1 面向对象的感知机API19
2.2.2 使用鸢尾花数据集训练感知机22
2.3 自适应线性神经元与算法收敛27
2.3.1 使用梯度下降法小化损失函数28
2.3.2 在Python中实现Adaline30
2.3.3 通过特征缩放改进梯度下降34
2.3.4 大规模机器学习与随机梯度下降36
2.4 本章小结41
XIV
第3章 ScikitLearn机器学习分类算法之旅42
3.1 分类算法的选择42
3.2 学习ScikitLearn的步——训练感知机43
3.3 用逻辑回归算法建模分类概率48
3.3.1 逻辑回归与条件概率48
3.3.2 用逻辑损失函数更新模型权重51
3.3.3 从Adaline的代码实现到逻辑回归的代码实现53
3.3.4 用ScikitLearn训练逻辑回归模型56
3.3.5 使用正则化避免模型过拟合59
3.4 基于分类间隔的支持向量机62
3.4.1 理解分类间隔62
3.4.2 使用松弛变量解决非线性可分问题62
3.4.3 ScikitLearn中另外一种实现64
3.5 使用核支持向量机求解非线性问题64
3.5.1 处理线性不可分数据的核方法64
3.5.2 使用核方法在高维空间中寻找分离超平面66
3.6 决策树学习69
3.6.1 化信息增益70
3.6.2 构建决策树73
3.6.3 多棵决策树组成随机森林76
3.7 基于惰性学习策略的k近邻算法78
3.8 本章小结81
第4章 构建良好的训练数据集——数据预处理83
4.1 处理缺失值83
4.1.1 识别表格数据中的缺失值83
4.1.2 删除含有缺失值的样本或特征85
4.1.3 填补缺失值85
4.1.4 ScikitLearn的估计器86
4.2 处理类别数据87
4.2.1 用pandas实现类别数据编码88
4.2.2 映射有序特征88
4.2.3 类别标签编码89
4.2.4 标称特征的独热编码90
4.3 将数据集划分为训练数据集和测试数据集93
4.4 使特征具有相同的尺度95
4.5 选择有意义的特征97
4.5.1 用L1和L2正则化对模型复杂度进行惩罚98
4.5.2 L2正则化的几何解释98
4.5.3 L1正则化与稀疏解99
4.5.4 序贯特征选择算法102
4.6 用随机森林评估特征重要性107
4.7 本章小结109
第5章 通过降维方法压缩数据110
5.1 无监督降维的主成分分析方法110
5.1.1 主成分分析的主要步骤110
5.1.2 提取主成分的步骤112
5.1.3 总方差和被解释的方差114
5.1.4 特征变换115
5.1.5 用ScikitLearn实现主成分分析118
5.1.6 评估特征的贡献120
5.2 监督数据压缩的线性判别分析方法122
5.2.1 主成分分析与线性判别分析122
5.2.2 线性判别分析基本原理123
5.2.3 计算散布矩阵124
5.2.4 为新特征子空间选择线性判别式126
5.2.5 将样本投影到新的特征空间128
5.2.6 用ScikitLearn实现线性判别分析128
5.3 非线性降维和可视化130
5.3.1 非线性降维的不足130
5.3.2 使用tSNE可视化数据131
5.4 本章小结135
XV
第6章 模型评估和超参数调优的实践136
6.1 使用pipeline方法简化工作流程136
6.1.1 加载威斯康星乳腺癌数据集136
6.1.2 在pipeline中集成转换器和估计器138
6.2 使用k折交叉验证评估模型性能140
6.2.1 holdout交叉验证140
6.2.2 k折交叉验证140
6.3 用学习曲线和验证曲线调试算法144
6.3.1 使用学习曲线解决偏差和方差问题144
6.3.2 使用验证曲线解决过拟合和欠拟合问题146
6.4 通过网格搜索微调机器学习模型148
6.4.1 通过网格搜索调整超参数148
6.4.2 通过随机搜索更广泛地探索超参数的配置149
6.4.3 连续减半超参数的搜索算法151
6.4.4 嵌套交叉验证153
6.5 模型性能评估指标154
6.5.1 混淆矩阵155
6.5.2 精确率和召回率156
6.5.3 绘制ROC曲线158
6.5.4 多分类器评价指标160
6.5.5 处理类别不均衡问题161
6.6 本章小结163
XVI
第7章 组合不同模型的集成学习164
7.1 集成学习164
7.2 通过多数投票组合分类器167
7.2.1 实现一个简单的基于多数投票的集成分类器167
7.2.2 使用多数投票原则进行预测171
7.2.3 评估和调整集成分类器173
7.3 bagging——基于bootstrap样本构建集成分类器179
7.3.1 bagging简介179
7.3.2 使用bagging对葡萄酒数据集中的样本进行分类180
7.4 通过自适应boosting提高弱学习器的性能184
7.4.1 boosting的工作原理184
7.4.2 用ScikitLearn实现AdaBoost188
7.5 梯度boosting——基于损失梯度训练集成分类器191
7.5.1 比较AdaBoost与梯度boosting191
7.5.2 通用的梯度boosting算法概述191
7.5.3 解释用于分类的梯度boosting算法193
7.5.4 用梯度boosting分类的例子194
7.5.5 使用XGBoost196
7.6 本章小结197
第8章 用机器学习进行情感分析198
8.1 对IMDb影评数据进行文本处理198
8.1.1 获取影评数据集199
8.1.2 将影评数据集预处理成更易使用的格式199
8.2 词袋模型201
8.2.1 将单词转换为特征向量201
8.2.2 通过词频-逆文档频率评估单词的相关性203
8.2.3 文本数据清洗204
8.2.4 将文档处理成token206
8.3 训练用于文档分类的逻辑回归模型208
8.4 处理更大的数据——在线算法
和核外学习方法210
8.5 用潜在狄利克雷分配实现主题
建模213
8.5.1 使用LDA分解文本
文档214
8.5.2 用ScikitLearn实现
LDA214
8.6 本章小结217
第9章 预测连续目标变量的
回归分析218
9.1 线性回归简介218
9.1.1 简单线性回归218
9.1.2 多元线性回归219
9.2 探索艾姆斯住房数据集220
9.2.1 将艾姆斯住房数据集加载
到DataFrame中220
9.2.2 可视化数据集的重要
特征222
9.2.3 使用相关矩阵查看
相关性223
9.3 小二乘线性回归模型的
实现225
9.3.1 用梯度下降法求解回归
参数225
9.3.2 用ScikitLearn估计回归
模型的系数229
9.4 使用RANSAC拟合稳健回归
模型231
9.5 评估线性回归模型的性能233
9.6 使用正则化方法进行回归237
9.7 将线性回归模型转化为曲线——
多项式回归238
9.7.1 使用ScikitLearn添加
多项式项239
9.7.2 建模艾姆斯住房数据
集中的非线性关系240
9.8 使用随机森林处理非线性
关系243
9.8.1 决策树回归243
9.8.2 随机森林回归245
9.9 本章小结247
XVII
第10章 处理无标签数据的
聚类分析248
10.1 使用k均值算法对样本分组248
10.1.1 用ScikitLearn实现
k均值聚类248
10.1.2 k均值 ——更聪明的
簇初始化方法252
10.1.3 硬聚类与软聚类253
10.1.4 用肘方法求解簇的
数量255
10.1.5 通过轮廓图量化聚类
质量255
10.2 把簇组织成层次树260
10.2.1 自底向上的聚类260
10.2.2 在距离矩阵上进行分层
聚类262
10.2.3 热度图与树状图
结合265
10.2.4 通过ScikitLearn进行
凝聚聚类266
10.3 通过DBSCAN定位高密度
区域267
10.4 本章小结272
XVIII
第11章 从零开始实现多层人工神经网络273
11.1 用人工神经网络建立复杂函数
模型273
11.1.1 单层神经网络274
11.1.2 多层神经网络结构275
11.1.3 利用前向传播激活神经
网络277
11.2 识别手写数字279
11.2.1 获取并准备MNIST
数据集279
11.2.2 实现多层感知机282
11.2.3 神经网络训练代码287
11.2.4 评估神经网络的
性能291
11.3 训练人工神经网络295
11.3.1 损失函数的计算295
11.3.2 理解反向传播296
11.3.3 通过反向传播训练
神经网络297
11.4 关于神经网络的收敛性300
11.5 关于神经网络实现的后
几句话300
11.6 本章小结301
第12章 用PyTorch并行训练
神经网络302
12.1 PyTorch和模型的训练性能302
12.1.1 性能挑战302
12.1.2 什么是PyTorch303
12.1.3 如何学习PyTorch304
12.2 学习PyTorch的步304
12.2.1 安装PyTorch305
12.2.2 在PyTorch中创建
|
內容試閱:
|
通过社交媒体和新闻报道我们已经了解到, 机器学习已成为这个时代非常振奋人心的技
术。 微软、 谷歌、 B / 3 1 、 苹果、 亚马逊、 H 、B 等公司都在机器学习科研与应用方面投入巨资。
机器学习已经成为我们这个时代的流行语, 这并非夸大其词。 机器学习领域为未来的无限可
能开辟了新道路, 已经成为我们日常生活中不可或缺的一部分。 机器学习应用包括手机语音
助手对话、 为顾客推荐商品、 识别信用卡盗刷、 过滤 X 领I1 4 E 垃圾邮件、 自动诊断疾病等。
本书适合有志于进入机器学习领域, 使用机器学习算法解决问题或从事机器学习研究的
人员阅读。 机器学习理论对初学者而言有一定难度, 初学者可以从阅读机器学习书籍并动手
实践机器学习算法入门。
练习实际的机器学习代码示例是一种进入机器学习领域的好方法。 通过具体的示例用所
学的知识解决实际的问题, 可以达到理解概念的目的。 本书除了介绍 或>3 8 N 5 机器学习库和用
机器学习库搭建模型外, 还介绍机器学习算法的数学理论, 这些数学理论对于深入理解机器
学习算法至关重要。 因此, 不同于只专注于实践的书籍, 本书讨论了机器学习算法的工作原
理、 使用方法、 实现细节以及如何避免机器学习算法实现过程中的常见问题。
本书涵盖了机器学习领域的基本概念和方法, 可以让读者全面地了解机器学习领域。 如
果想深入了解机器学习算法, 可以参考本书引用的资源, 这些资源都是机器学习领域近的
重要突破。
|
|