登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2025年08月出版新書

2025年07月出版新書

2025年06月出版新書

2025年05月出版新書

2025年04月出版新書

2025年03月出版新書

2025年02月出版新書

2025年01月出版新書

2024年12月出版新書

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

『簡體書』合成孔径雷达图像目标识别

書城自編碼: 3982263
分類: 簡體書→大陸圖書→計算機/網絡程序設計
作者: 刘明
國際書號(ISBN): 9787121476297
出版社: 电子工业出版社
出版日期: 2024-04-01

頁數/字數: /
釘裝: 平塑

售價:NT$ 500

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
我们的箱根驿传
《 我们的箱根驿传 》

售價:NT$ 332.0
思想的手法:如何“做中国哲学”
《 思想的手法:如何“做中国哲学” 》

售價:NT$ 398.0
图说新质生产力2:智能制造 落地化解读新质生产力的内涵和精髓
《 图说新质生产力2:智能制造 落地化解读新质生产力的内涵和精髓 》

售價:NT$ 301.0
日本公司法(第四版)
《 日本公司法(第四版) 》

售價:NT$ 913.0
故宫叙事:百年守宝传奇
《 故宫叙事:百年守宝传奇 》

售價:NT$ 403.0
女性,战争与回忆 了解中国女性地位蜕变史
《 女性,战争与回忆 了解中国女性地位蜕变史 》

售價:NT$ 347.0
失落世界的幻境:博物馆里的古生物复原艺术
《 失落世界的幻境:博物馆里的古生物复原艺术 》

售價:NT$ 857.0
明仕录(真实还原明代精致生活)
《 明仕录(真实还原明代精致生活) 》

售價:NT$ 1015.0

建議一齊購買:

+

NT$ 534
《Java深度调试技术》
+

NT$ 509
《用Go语言自制编译器》
+

NT$ 709
《烟花算法理论及应用》
+

NT$ 435
《C程序设计语言(原书第2版·新版)典藏版》
+

NT$ 505
《Rust编程与项目实战》
+

NT$ 662
《Python深度学习(第2版)》
內容簡介:
本书共计11章,第1章对合成孔径雷达(SAR)目标识别进行了概述;第2章介绍了基于局部保持特性和混合高斯分布的SAR目标识别;第3章介绍了基于局部保持特性和Gamma分布的SAR目标识别;第4章介绍了基于结构保持投影的SAR目标识别;第5章介绍了基于类别稀疏表示的SAR目标识别;第6章介绍了基于乘性稀疏表示和Gamma分布的SAR目标识别;第7章介绍了基于判别统计字典学习的SAR目标识别;第8章介绍了于Dempster-Shafer证据理论融合多稀疏描述和样本统计特性的SAR目标识别;第9章介绍了基于Dempster-Shafer证据理论和稀疏表示的SAR目标识别;第10章介绍了基于两阶段稀疏结构表示的SAR目标识别;第11章探讨了未来合成孔径雷达目标识别可能的发展方向。
關於作者:
刘明,工学博士,副教授,硕士生导师。2009年获西安电子科技大学信息对抗技术专业工学学士学位,2015年获西安电子科技大学模式识别与智能系统专业工学博士学位。2019年-2020年为加拿大McMaster University访学学者。主要研究方向为:目标检测与目标识别。入选陕西省科协青年人才托举计划,获国际无线电科学联盟(URSI)”青年科学家”奖,获陕西省计算机学会”计算机领域优秀青年专家”称号。主持和参与了包括国家自然科学基金、国家重大基础研究计划、装备预先研究、陕西省自然科学基金等10余项国家级和省部级科研项目。发表学术论文60余篇,授权国家发明专利10项(部分已转化)。
目錄
第1 章 绪论························································································1
1.1 研究背景及研究意义··································································1
1.2 国内外研究现状········································································3
1.3 本书内容介绍········································································.10
第2 章 基于局部保持特性和混合高斯分布的SAR 图像目标识别··················.14
2.1 算法概述··············································································.14
2.2 局部保持投影算法··································································.15
2.3 基于LPP-GMD 算法的SAR 图像目标识别···································.16
2.3.1 基于混合高斯分布的似然函数建模····································.17
2.3.2 基于局部保持特性的先验函数建模····································.17
2.3.3 参数估计·····································································.18
2.4 试验结果与分析·····································································.22
2.5 本章小结··············································································.26
第3 章 基于局部保持特性和Gamma 分布的SAR 图像目标识别··················.27
3.1 算法概述··············································································.27
3.2 SAR 图像的乘性相干斑模型······················································.28
3.3 基于LPP-Gamma 算法的SAR 图像目标识别·································.29
3.3.1 基于Gamma 分布构建似然函数········································.29
3.3.2 基于局部保持特性构建先验函数·······································.30
3.3.3 参数估计·····································································.33
3.4 试验结果与分析·····································································.37
3.4.1 SAR 图像目标识别结果··················································.37
3.4.2 修正相似度矩阵的有效性验证··········································.39
3.5 本章小结··············································································.41
第4 章 基于结构保持投影的SAR 图像目标识别·······································.42
4.1 算法概述··············································································.42
4.2 基于CDSPP 算法的SAR 图像目标识别·······································.43
4.2.1 CDSPP 算法·································································.43
4.2.2 差异度矩阵分析····························································.45
4.3 试验结果与分析·····································································.49
4.3.1 目标的类别识别····························································.51
4.3.2 目标的型号识别····························································.53
4.3.3 构建差异度矩阵的优势···················································.57
4.4 本章小结··············································································.59
第5 章 基于类别稀疏表示的SAR 图像目标识别·······································.60
5.1 算法概述··············································································.60
5.2 SAR 图像的稀疏表示模型·························································.61
5.3 SAR 图像的类别稀疏表示模型···················································.62
5.3.1 方位角敏感特性····························································.62
5.3.2 测试样本建模·······························································.64
5.3.3 稀疏向量求解·······························································.66
5.4 基于LSR 算法的SAR 图像目标识别···········································.67
5.5 试验结果与分析·····································································.70
5.5.1 目标的类别识别····························································.70
5.5.2 目标的型号识别····························································.72
5.6 本章小结··············································································.76
第6 章 基于乘性稀疏表示和Gamma 分布的SAR 图像目标识别··················.77
6.1 算法概述··············································································.77
6.2 乘性稀疏表示算法··································································.78
6.3 试验结果与分析·····································································.80
6.3.1 目标的类别识别····························································.81
6.3.2 目标的型号识别····························································.82
6.4 本章小结··············································································.88
第7 章 基于判别统计字典学习的SAR 图像目标识别·································.89
7.1

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2025 (香港)大書城有限公司 All Rights Reserved.