新書推薦:
《
梦醒子:一位华北乡居者的人生(1857—1942))(第2版)
》
售價:NT$
340.0
《
啊哈!原来如此(中译本修订版)
》
售價:NT$
290.0
《
部分识别入门——计量经济学的创新性方法
》
售價:NT$
345.0
《
东野圭吾:变身(来一场真正的烧脑 如果移植了别人的脑子,那是否还是我自己)
》
售價:NT$
295.0
《
推荐连接万物
》
售價:NT$
290.0
《
严复与福泽谕吉启蒙思想比较(王中江著作系列)
》
售價:NT$
750.0
《
甘于平凡的勇气
》
售價:NT$
225.0
《
存在与结构:精神分析的法国转向——以拉康与萨特为中心
》
售價:NT$
240.0
|
內容簡介: |
圍繞三大主線:神經網路、智慧推理、矩陣計算
提供豐富案例:近25個經典的演算法講解
解剖具代表性的演算法:Scikit-Learn、OpenCV、Theano
本書以機器學習原理和演算法編碼學習為主,內容分二大主線:單個演算法的原理講解和機器學習理論的發展變遷。
演算法除包含傳統的分類、聚類、預測等常用演算法之外,還新增深度學習、貝氏網、隱馬克夫模型等內容。每個演算法,都涵蓋提出問題、解決策略、數學推導、編碼實現、結果評估等部分。
數學推導力圖做到深入淺出。結構上數學原理與程式碼一一對照,有助於降低學習門檻,加深公式的理解,發揮推廣和擴大機器學習的作用。
適合:對機器學習演算法有興趣者,或工程技術人員。
|
關於作者: |
鄭捷
www.threedweb.cn網站負責人,研究方向是機器學習與自然語言處理。負責高精度自然語言認知系統的設計與研發,研發目標是高精度(識別率在85%~95%)的統一架構的NLP認知系統。
|
目錄:
|
前言
01機器學習的基礎
1.1程式語言與開發環境
1.2物件、矩陣與向量化程式設計
1.3機器學習的數學基礎
1.4資料處理與視覺化
1.5Linux作業系統下部署Python機器學習開發環境
1.6結語
02中文文字分類
2.1文字採擷與文字分類的概念
2.2文字分類專案
2.3分類演算法:單純貝氏
2.4分類演算法:kNN
2.4.3評估分類結果
2.5結語
03決策樹的發展
3.1決策樹的基本思想
3.2ID3決策樹
3.3C4.5演算法
3.4Scikit-Learn與回歸樹
3.5結語
04推薦系統原理
4.1推薦系統概述
4.2協作過濾及其演算法
4.3KMeans演算法詳解
4.4分群的改進:二分KMeans演算法
4.5SVD演算法詳解
4.6結語
05梯度尋優
5.1最最佳化與計算複雜性
5.2Logistic梯度下降法
5.3演算法分析
5.4隨機梯度下降法:演算法改進與評估
5.5結語
06神經網路初步
6.1神經網路簡史
6.2BP神經網路理論
6.3BP網路的實現和評估
6.4自我組織特徵對映神經網路
6.5Boltzmann機演算法
6.6結語
07預測的技術與哲學
7.1線性系統的預測
7.2徑向基網路
7.3嶺回歸
7.4預測的哲學
7.5結語
08萬能分類器——支援向量機
8.1支援向量機的理論基礎
8.2SVM的數學推導
8.3SMO演算法
8.4SVM中文文字分類
8.5結語
09人臉識別中的機器學習
9.1模式識別概述
9.2人臉檢測
9.3AdaBoost演算法概述
9.4人臉識別
9.5結語
10認知計算與深度學習
10.1認知計算
10.2多層感知器
10.3旋積神經網路
10.4Theano安裝與GPU運算
10.5結語
11機率圖模型與詞性標記
11.1馬可夫過程
11.2機率圖模型和貝氏網
11.3隱馬可夫模型
11.4詞性標記系統
11.5結語
|
|