新書推薦:

《
壹卷YeBook——记忆肖像:罗素回忆录(诺贝尔文学奖得主哲学大师罗素传记性回忆录)
》
售價:NT$
245

《
历史认知语言学
》
售價:NT$
398

《
社会正义与城市
》
售價:NT$
347

《
壹卷YeBook——晚清民国的国学研究(重塑国学回到国学大师的黄金时代)
》
售價:NT$
490

《
壹卷YeBook——中国现代考古学的思想谱系(增订版)(论世衡史 重返学术现场考古学如何应答时代之问
》
售價:NT$
418

《
在城在乡:清代江南市镇与农村关系的空间透视(清史研究丛书新编)
》
售價:NT$
505

《
唐代长安与西域文明 全新增订本 带你领略西域诸国的风土人情
》
售價:NT$
235

《
法律解释:来自其他学科和私人文本的视角
》
售價:NT$
449
|
| 內容簡介: |
|
本书主要考虑三维空间中,其初值在单位球面外为常值的任意状态方程的经典可压缩欧拉方程。当初值与常状态差别适当小时,我们建立的定理可以给出关于解的完整描述。特别地,解的定义域的边界包含一个奇异部分,在那里波前的密度将会趋向于无穷大,从而激波形成。在本书中,我们采用几何化方法,得到了关于这个奇异部分的完整的几何描述以及解在这部分性态的详细分析,其核心概念是声学时空流形。
|
| 目錄:
|
1 Compressible Flow and Non-linear Wave Equations
1.1 Euler''s Equations
1.2 Irrotational Flow and the Nonlinear Wave Equation
1.3 The Equation of Variations and the Acoustical Metric
1.4 The Fundamental Variations
2 The Basic Geometric Construction
2.1 Null Foliation Associated with the Acoustical Metric
2.1.1 Galilean Spacetime
2.1.2 Null Foliation and Acoustical Coordinates
2.2 A Geometric Interpretation for Function H
3 The Acoustical Structure Equations
3.1 The Acoustical Structure Equations
3.2 The Derivatives of the Rectangular Components of L and T
4 The Acoustical Curvature
4.1 Expressions for Curvature Tensor
4.2 Regularity for the Acoustical Structure Equations as μ → 0
4.3 A Remark
5 The Fundamental Energy Estimate
5.1 Bootstrap Assumptions. Statement of the Theorem
5.2 The Multiplier Fields K0 and K1. The Associated Energy-Momentum Density Vectorfields
5.3 The Error Integrals
5.4 The Estimates for the Error Integrals
5.5 Treatment of the Integral Inequalities Depending on t and u.
Completion of the Proof
6 Construction of Commutation Vectorfields
6.1 Commutation Vectorfields and Their Deformation Tensors
6.2 Preliminary Estimates for the Deformation Tensors
7 Outline of the Derived Estimates of Each Order
7.1 The Inhomogeneous Wave Equations for the Higher Order Variations. The Recursion Formula for the Source Functions
7.2 The First Term in ρn
7.3 The Estimates of the Contribution of the First Term in ρn to the Error Integrals
8 Regularization of the Propagation Equation for □trX. Estimates for the Top Order Angular Derivatives of X
8.1 Preliminary
8.1.1 Regularization of The Propagation Equation
8.1.2 Propagation Equations for Higher Order Angular Derivatives
8.1.3 Elliptic Theory on St,u
8.1.4 Preliminary Estimates for the Solutions of the Propagation Equations
8.2 Crucial Lemmas Concerning the Behavior of μ
8.3 The Actual Estimates for the Solutions of the Propagation Equations
9 Regularization of the Propagation Equation for □μ.
Estimates for the Top Order Spatial Derivatives of μ
9.1 Regularization of the Propagation Equation
9.2 Propagation Equations for the Higher Order Spatial Derivatives
9.3 Elliptic Theory on St,u
9.4 The Estimates for the Solutions of the Propagation Equations
10 Control of the Angular Derivatives of the First Derivatives of
the xi. Assumptions and Estimates in Regard to X
10.1 Preliminary
10.2 Estimates for yi
10.2.1 L∞ Estimates for Rik ... .Ri1yj
10.2.2 L2 Estimates for Rik... Pi1yj
10.3 Bounds for the quantities Ql and Pl
10.3.1 Estimates for Ql
10.3.2 Estimates for Pl
11 Control of the Spatial Derivatives of the First Derivatives of
the xi. Assumptions and Estimates in Regard to μ
11.1 Estimates for TTi
11.1.1 Basic Lemmas
11.1.2 L∞ Estimates for TTi
11.1.3 L2 Estimates for TTi
11.2 Bounds for Quantities Q''m,l and P''m,l
11.2.1 Bounds for Q''m,l
11.2.2 Bounds for P''m,l
12 Recovery of the Acoustical Assumptions
Estimates for Up to the Next to the Top Order Angular
Derivatives of X and Spatial Derivatives of μ
12.1 Estimates for λi, y'', yi and r. Establishing the Hypothesis H0
12.2 The Coercivity Hypothesis H1, H2 and H2''. Estimates for X''
12.3 Estimates for Higher Order Derivatives of X'' and μ
13 Derivation of the Basic Properties of μ
14 The Error Estimates Involving the Top Order Spatial
Derivatives of the Acoustical Entities
14.1 The Error Terms Involving the Top Order Spatial
Derivatives of the Acoustical Entities
14.2 The Borderline Error Integrals
14.3 Assumption J
14.4 The Borderline Estimates Associated to K0
14.4.1 Estimates for the Contribution of 14.56
14.4.2 Estimates for the Contribution of 14.57
14.5 The Borderline Estimates Associated to K1
14.5.1 Estimates for the Contribution of 14.56
14.5.2 Estimates for the Contribution of 14.57
15 The Top Order Energy Estimates
15.1 Estimates Associated to K1
15.2 Estimates Associated to K0
16 The Descent Scheme
17 The Isoperimetric Inequality. Recovery of Assumption J.
Recovery of the Bootstrap Assumption. Proof of the Main
Theorem
17.1 Recovery of J--Preliminary
17.2 The Isoperimetric Inequality
17.3 Recovery of J--Completion
17.4 Recovery of the Final Bootstrap Assumption
17.5 Completion of the Proof of the Main Theorem
18 Sufficient Conditions on the Initial Data for the Formation of a Shock in the Evolution
19 The Structure of the Boundary of the Domain of the Maximal Solution
19.1 Nature of Singular Hypersurface in Acoustical Differential Structure
19.1.1 Preliminary
19.1.2 Intrinsic View Point
19.1.3 Invariant Curves
19.1.4 Extrinsic View Point
19.2 The Trichotomy Theorem for Past Null Geodesics Ending at Singular Boundary
19.2.1 Hamiltonian Flow
19.2.2 Asymptotic Behavior
19.3 Transformation of Coordinates
19.4 How H Looks Like in Rectangular Coordinates in Galilean Spacetime
References
|
|