| 
 新書推薦:
 
  《 
			要有光
			》
 售價:HK$ 
			352
 
  《 
			岁月的泡沫(波伏瓦、加缪的密友,法国文坛鬼才书写爱情霍乱!)
			》
 售價:HK$ 
			214
 
  《 
			索恩丛书·帝国计划:英国世界体系的兴衰(1830~1970)
			》
 售價:HK$ 
			862
 
  《 
			改变的勇气:数十个真实人生蜕变故事,教你改变命运的密码。
			》
 售價:HK$ 
			301
 
  《 
			明清时期的灾害治理机制
			》
 售價:HK$ 
			306
 
  《 
			甲骨文丛书·理查国王:尼克松和水门事件
			》
 售價:HK$ 
			505
 
  《 
			绣罗衣裳照暮春——古代服饰与时尚
			》
 售價:HK$ 
			434
 
  《 
			HR如何招聘人才:招聘思维与技能
			》
 售價:HK$ 
			286
 
 
 | 
         
          | 編輯推薦: |   
          | 《先进功能材料丛书》是由师昌绪院士主编的“十二五”规划重点图书。 近年来,生物活性物质控释系统的研究主要集中于:时控型药物控释系统;自调节药物控释系统;靶向药物控释系统;智能型药物控释系统以及核酸类药物输送系统。受自然界天然传递系统的启发,如何运用仿生的方法构建和优化药物、蛋白质和基因的运输系统将是一个新兴的发展方向和趋势,它是涉及生物学、材料学、化学、物理学、药学、工程学等学科的多学科交叉研究领域。
 (1国际上第一本生物启发和仿生聚合物系统的药物传递的专著;
 2包括美国工程院院士在内的多名国内外药物控释系统研究领域的著名科学家共同编写;
 (3)反应了国际上最先进的研究成果。
 |  
         
          | 內容簡介: |   
          | 近年来,生物活性物质控释系统的研究主要集中于:时控型药物控释系统;自调节药物控释系统;靶 药物控释系统;组织细胞微环境响应性药物控释系统以及核酸类药物递送系统。受自然界启发,如何运用仿生的方法构建和优化药物、蛋白质和基因的递送系统已是一个新兴的发展方向和趋势,它是涉及生物学、材料学、化学、物理学、药学、工程学等学科的多学科交叉研究领域。 本书汇聚了包括美国工程院院士在内的多名国内外药物控释系统研究领域的著名科学家近年来的最新研究工作。作为国际上第一本生物启发和仿生高分子的药物及基因递送系统的专著,本书不仅报道了药物递送领域的最新进展和未来发展方向,还分别从材料与细胞相互作用、载体材料的组织细胞微环境响应性设计、控释系统在体内环境下生物活性物质的高效释放及有效表达等不同的角度对药物递送系统的未来发展方向进行了新的诠释和展望,充分体现了前瞻性和新颖性,是该领域一部难得的、非常有价值的专著。
 本书可供从事生物工程、纳米技术及材料领域的高校、科研院所、公司企业的相关研究人员使用。同时可作为生物医学工程、高分子科学及相关交叉学科的研究生及本科生教学参考书。
 |  
         
          | 關於作者: |   
          | 顾忠伟,四川大学国家医学材料工程技术研究中心,教授博导,973首席科学家,自七十年代中期以来,致力于生物医用高分子材料及其药物生物活性物质控制释放系统的基础和应用基础研究,并在这一领域内积累了较丰富的理论基础知识和实践经验,掌握了这一领域的科学前沿和发展方向。先后三次出任国家973计划项目首席科学家并负责其子项目,曾主持“七.五”、“八.五”、“九.五”国家重点攻关、国家自然科学基金重点和面上、国家新药研究基金、北京市自然科学基金、国家科技部、国家计生委及国际合作项目等近30项科研项目。曾获得两项部委科技奖励;在国内外重要学术期刊上发表论文共180余篇(其中SCI源刊论文160余篇),以及80篇国际及全国学术会议报告摘要,并在世界生物材料大会、亚洲生物材料大会、中国材料学会年会、全国高分子年会等国内外学术会议上作了60余次大会或邀请报告;主持和参与组织生物材料国际及全国学术会议20余次,多次参与有关我国生物材料发展规划和建议讨论并执笔。现为J. Reproductive Medicine 杂志副主编,Biomed. Mater. 、Int. J Med. Eng. & Inf.、Biomatter等杂志编委。 |  
         
          | 目錄: |   
          | List of Contributors XIII Preface XIX
 1 Backbone Degradable and Coiled-Coil Based Macromolecular
 Therapeutics 1
 Jiyuan Yang and Jindˇ rich Kopeˇ cek
 1.1 Introduction 1
 1.2 Water-Soluble Polymers as Carriers of Anticancer Drugs 2
 1.2.1 First Generation Conjugates – Design, Synthesis, and Activity 2
 1.2.2 Analysis of Design Factorshat Need Attention 2
 1.2.2.1 Design of Conjugates for the Treatment of Noncancerous
 Diseases 2
 1.2.2.2 Combinationherapy Using Polymer-Boundherapeutics 3
 1.2.2.3 New Targeting Strategies 4
 1.2.2.4 Relationship Between Detailed Structure of the Conjugates andheir
 Properties 5
 1.2.2.5 Impact of Binding a Drug to a Polymer on the Mechanism of
 Action 6
 1.2.2.6 Mechanism of Internalization and Subcellular Tra?cking 7
 1.2.2.7 Relationship Between the MolecularWeight of the Carrier and the
 E?cacy of the Conjugate 7
 1.2.3 Design of Second Generation Conjugates – Long-Circulating and
 Backbone Degradable 8
 1.2.3.1 RAFT Copolymerization for the Synthesis of Conjugates 8
 1.2.3.2 Click Reactions for Chain Extension into Multiblock
 Copolymers 10
 1.2.3.3 Biological Properties of Long-Circulating Macromolecular
 herapeutics 10
 1.2.4 Summary of Part 2 and Future Prospects 14
 1.3 Drug-Free Macromolecularherapeutics – A New Paradigm in
 Drug Delivery 15
 1.3.1 Biorecognition in Hybrid Polymer Systems 15
 1.3.2 Coiled-Coils in Biomedical Systems 16
 1.3.3 Coiled-Coil Based Drug-Free Macromolecularherapeutics: Design,
 In Vitro,and In Vivo Activity 17
 1.3.4 Potential, Limitations, and Future Prospect of Drug-Free
 Macromolecularherapeutics 18
 1.4 General Summary and Outlook 20
 Acknowledgments 21
 References 21
 2 Dendritic Polymers as Targeting Nanoscale Drug Delivery Systems
 forCancerTherapy 29
 Kui Luo and Zhongwei Gu
 2.1 Introduction 29
 2.2 Functional Dendritic Polymers Based Drug Delivery Vehicles for
 Targeting Tumorherapy via EPR E?ect 30
 2.2.1 Functional Dendritic Polymers for Encapsulation of Anticancer
 Drugs 32
 2.2.2 Chemical Conjugation Functional Dendritic Polymers as Drug
 Delivery Systems 37
 2.3 Tumor Targeting Moieties Functionalized Dendritic Drug Delivery
 Vehicles for Cancerherapy 45
 2.4 Conclusion 54
 References 54
 3 Composite Colloidal Nanosystems for Targeted Delivery
 and Sensing 61
 Pilar Rivera Gil,Moritz Nazarenus, andWolfgang J. Parak
 3.1 Introduction 61
 3.1.1 Working Toolkit 62
 3.1.2 Engineering a Multifunctional Carrier 63
 3.2 Objective 66
 3.3 Cellular Behavior of the Carrier 66
 3.3.1 Intracellular Fate 66
 3.3.2 Biocompatibility 69
 3.4 Applications 71
 3.4.1 Delivery with Multifunctional PEM Capsules 71
 3.4.1.1 Magnetic Targeting and Magnetofection 71
 3.4.1.2 Strategies for Controlled Opening 73
 3.4.2 Intracellular Ion Sensing 75
 3.5 Conclusions 77
 Abbreviations 77
 References 78
 4 Polymeric Micelles for Cancer-Targeted Drug Delivery 85
 Huabing Chen, Zhishen Ge, and Kazunori Kataoka
 4.1 Introduction 85
 4.2 Micelle Formulations in Clinical Development 85
 4.3 ParticleSizeofMicelles 89
 4.4 Morphology of Micelles 92
 4.5 Targeting Design of Micelles for Enhanced Accumulation and Cell
 Internalization 94
 4.6 Functional Designs of Micelles 96
 4.7 Design of Micelles for Gene Delivery 99
 4.8 Challenge and Future Perspective 103
 References 104
 5 Biomimetic Polymers for In Vivo Drug Delivery 109
 WenpingWang and KinamPark
 5.1 Introduction 109
 5.2 Commonly Used Biomimetic Polymers andheir Applications
 in DDS 110
 5.2.1 Polylactones andheir Modi?cations 110
 5.2.1.1 Polylactic acid PLA 110
 5.2.1.2 Polylactic-co-glycolic acid PLGA 113
 5.2.1.3 Polyε-caprolactone PCL 118
 5.2.2 Dendrimer 124
 5.2.2.1 Structure and Properties of Dendrimers 124
 5.2.2.2 Types of Dendrimers 124
 5.2.2.3 Applications of Dendrimers as Carriers in Drug Delivery
 Systems 124
 5.2.3 Synthetic Polypeptides 134
 5.3 Challenges and Perspectives 135
 References 136
 6 Drug Delivery fromProtein-Based Nanoparticles 149
 Dan Ding and Xiqun Jiang
 6.1 Introduction 149
 6.2 Preparation of Protein-Based Nanoparticles 150
 6.2.1 Desolvation 150
 6.2.2 Emulsi?cation 151
 6.2.3 Coacervation 151
 6.2.4 Polymer–Monomer Pair Reaction System 151
 6.3 Drug Delivery from Albumin-Based Nanoparticles 152
 6.3.1 Albumin-Based Nanoparticles as Drug Carriers 152
 6.3.2 Targeting Ligand-Functionalized Albumin-Based
 Nanoparticles 154
 6.3.3 Nanoparticle Albumin-Bound nabTechnology 156
 6.4 Drug Delivery from Gelatin-Based Nanoparticles 156
 6.4.1 Gelatin-Based Nanoparticles as Drug Carriers 158
 6.4.2 Targeting Ligand-Functionalized Gelatin-Based Nanoparticles 160
 6.4.3 Site-Speci?c Drug Delivery System 162
 6.5 Drug Delivery from Other Protein-Based Nanoparticles 163
 References 165
 7 Polymeric Gene Carriers 171
 Xuesi Chen, Huayu Tian, and Xiuwen Guan
 7.1 Geneherapy and Gene Carriers 171
 7.1.1 Geneherapy 171
 7.1.1.1 he Concept of Geneherapy 171
 7.1.1.2 Development and the Present Situation of Geneherapy 171
 7.1.1.3 Methods and Strategies of Geneherapy 172
 7.1.1.4 Research Contents and Challenges of Geneherapy 174
 7.1.2 Gene Carriers 175
 7.1.2.1 he Concept of Gene Carrier 175
 7.1.2.2 he Necessity of the Gene Carrier 175
 7.1.2.3 Requirements of Gene Carrier 176
 7.1.2.4 Classi?cation of Gene Carrier 176
 7.2 Polymeric Gene Carriers 178
 7.2.1 Cationic Polymer Gene Carriers 178
 7.2.1.1 Process of the Polycation Vector Mediated Gene Delivery 179
 7.2.1.2 Categories and Research Situation of the Cationic Polymer Gene
 Vector 180
 7.3 PEI Grafting Modi?cation Polymeric Gene Carriers 183
 7.3.1 Amino Acid Derivatives Modi?ed Polymeric Gene Carriers 183
 7.3.1.1 Polyglutamic acid Derivatives Modi?ed PEI 184
 7.3.1.2 Polyphenylalanine Derivatives Modi?ed PEI 186
 7.3.2 PEG Modi?ed Hyperbranched PEI 187
 7.4 Low MolecularWeight LWM PEI Base Polymeric Gene
 Carriers 188
 7.4.1 Crosslinked Polycations 188
 7.4.1.1 Crosslinked Polycation OEI-CBA 188
 7.4.1.2 Crosslinked Polycation OEI-PBLG-PEGDA 189
 7.4.1.3 Hexachlorotriphosphazene Crosslinked Polycation 190
 7.4.2 Grafted Polycations 190
 7.4.2.1 Grafted Cationic Polymer MP-g-OEI 190
 7.4.2.2 Graft Cationic Polymer N-PAE-g-OEI 191
 7.4.2.3 Graft Cationic Polymer mPEG-b-PMCC-g-OEI 192
 7.5 Targeted Shielding System for Polymeric Gene Carriers 192
 7.5.1 Static Shielding System 192
 7.5.1.1 Polyglutamine acid Shielding System and PEGylations 195
 7.5.1.2 Sulfonamides Related Shielding System 195
 7.5.2 Other Design Strategies of Cationic Gene Carrier 196
 7.6 Conclusion 197
 References 197
 8 pH-Sensitive Polymeric Nanoparticles as Carriers for Cancer Therapy
 and Imaging 203
 Yi Li, Guang Hui Gao, Ick Chan Kwon, and Doo Sung Lee
 8.1 Introduction 203
 8.2 pH-Sensitive Polymers 204
 8.2.1 pH-Sensitive Anionic Polymers 205
 8.2.2 pH-Sensitive Cationic Polymers 207
 8.2.3 pH-Sensitive Neutral Polymers 208
 8.3 pH-Sensitive Polymers as Drug Carriers 209
 8.3.1 pH-Sensitive Polymer–Drug Conjugates 210
 8.3.2 pH-Sensitive Polymeric Micelles 210
 8.3.3 pH-Sensitive Polymersomes 212
 8.3.4 pH-Sensitive Polymer–Inorganic Hybrid Nanoparticles 214
 8.3.5 pH-Sensitive Dendrimers 214
 8.4 pH-Sensitive Polymers for Bioimaging 215
 8.5 Conclusions 216
 References 216
 9 Charge-Reversal Polymers for Biodelivery 223
 Bo Zhang, KaiWang, Jingxing Si,Meihua Sui, and Youqing Shen
 9.1 Applications of Cationic Polymers in Biodelivery 223
 9.2 Barriers for Cationic Polymers in In vitro and In vivo
 Applications 224
 9.3 Characteristic pH Gradients in Tumor Interstitium and
 EndoLysosomes 225
 9.4 Chemistry of Charge-Reversal Polymers Based on Acid-Labile
 Amides 226
 9.4.1 pHe-Triggered Charge-Reversal 228
 9.4.2 pHL-Triggered Charge-Reversal 229
 9.5 Applications of Charge-Reversal Polymers in Biodelivery
 Systems 230
 9.5.1 Charge-Reversal in Cancer Drug Delivery 230
 9.5.2 Charge-Reversal in Gene Delivery 232
 9.5.3 Charge-Reversal in Protein Delivery 235
 9.5.4 Charge-Reversal Incorporated with Inorganic Materials 236
 9.6 Perspectives 237
 References 237
 10 Phenylboronic Acid-Containing Glucose-Responsive Polymer
 Materials: Synthesis and Applications in Drug Delivery 243
 RujiangMa and Linqi Shi
 10.1 Introduction 243
 10.2 PBA-Containing Polymers Operating Under Physiological
 Conditions 244
 10.3 Chemically Crosslinked PBA-Based Gels 247
 10.4 Self-Assembled PBA-Based Polymer Micelles 253
 10.5 Self-Assembled PBA-Based Polymersomes 266
 10.6 Perspectives 271
 References 272
 11 Extracellular pH-Activated Nanocarriers for Enhanced Drug
 Delivery to Tumors 277
 You-Yong Yuan, Cheng-QiongMao, Jin-Zhi Du, Xian-Zhu Yang,
 and JunWang
 11.1 Introduction 277
 11.2 Passive and Active Tumor Targeting 278
 11.3 Targeting the Extracellular pH pHe in Tumors 279
 11.4 Extracellular pH-Induced Drug Delivery to Tumors 280
 11.5 Ligand Exposure by a ShieldingDeshielding Method 281
 11.6 Surface Charge Reversing Nanoparticles 283
 11.6.1 Enhanced Cellular Uptake by Surface Charge Reversing
 Nanoparticles 283
 11.6.2 Overcoming MDR by Surface Charge Reversing Nanoparticles 287
 11.6.3 Enhanced Delivery of siRNA by Surface-Charge Reversing
 Nanoparticles 295
 11.7 Conclusion 300
 References 300
 12 Stimulation-Sensitive Drug Delivery Systems 305
 Xintao Shuai and Du Cheng
 12.1 Introduction 305
 12.2 pH-Sensitive Delivery Systems 306
 12.2.1 pH-Sensitive Micellar Delivery Systems 306
 12.2.2 pH-Sensitive Polymer–Drug Conjugates 307
 12.2.3 pH-Sensitive Dendrimers 308
 12.2.4 pH-Sensitive Liposomes 310
 12.3 hermo-Sensitive Delivery Systems 311
 12.4 Biomolecule-Sensitive Delivery Systems 314
 12.4.1 Enzyme-Sensitive Nanocarriers 315
 12.4.2 Reduction–Responsive Conjugates 316
 12.5 Other Environmentally Sensitive Nanocarriers 318
 12.6 Outlook 319
 References 320
 Index 331
 |    |