新書推薦:

《
精神分析与灵魂治疗(2025版)
》
售價:NT$
254.0

《
大学问·市镇内外:晚明江南的地域结构与社会变迁(以地方权势阶层为切入点,剖析市镇兴衰与社会秩序变迁,为江南市镇研究开辟全新视角。)
》
售價:NT$
398.0

《
王朝的赌局:宋徽宗联金灭辽的致命抉择
》
售價:NT$
398.0

《
盔甲骑士:为自己出征(纪念版)
》
售價:NT$
254.0

《
地图中的战争史.海战篇(世界知名历史学家杰里米·布莱克口碑之作!)
》
售價:NT$
755.0

《
预见6G
》
售價:NT$
449.0

《
全球视野下的投资机会
》
售價:NT$
449.0

《
地图中的战争史.陆战篇(一本书看透军事地图对500余年来近现代世界的塑造)
》
售價:NT$
857.0
|
內容簡介: |
本书是一部非常优秀的介绍偏微分方程的入门书籍,可以作为研究生阶段学习的基石。本书详尽地介绍了偏微分方程理论的重要方面,并从数学分析的角度做了进一步的探讨。本书是第4版,增加了全新的一章讲述无解线性方程的Lewy例子。
|
關於作者: |
Fritz JohnF.
约翰,美国,著名数学家,曾获得伯克霍夫奖(Birkhoff Prize)和斯蒂尔奖(Steele
Prize)等多个奖项。
|
目錄:
|
Chapter 1 The Single First-Order Equation
?1.Introduction
?2.Examples
?3.Analytic Solution and Approximation Methods in a Simple Example
?Problems
?4.Quasi-linear Equations
?5.The Cauchy Problem for the Quasi-linear Equation
?6.Examples
?Problems
?7.The General First-Order Equation for a Function of Two Variables
?8.The Cauchy Problem
?9.Solutions Generated as Envelopes
?Problems
Chapter 2 Second-Order Equations: Hyperbolic Equations for Functions of Two Independent Variables
?1.Characteristics for Linear and Quasi-linear Second-order Equations
?2.Propagation of Singularities
?3.The Linear Second-Order Equation
?Problems
?4.The One-Dimensional Wave Equation
?Problems
?5.Systems of First-Order Equations
?6.A Quasi-linear System and Simple Waves
?Problem
Chapter 3 Characteristic Manifolds and the Cauchy Problem
?1.Notation of Laurent Schwartz
?Problems
?2.The Cauchy Problem
?Problems
?3.Real Analytic Functions and the Cauchy-Kowalevski Theorem
?(a) Multiple infinite series
?Problems
?(b) Real analytic functions
?Problems
?(c) Analytic and real analytic functions
?Problems
?(d) The proof of the Cauchy-Kowalevski theorem
?Problems
?4.The Lagrange-Green Identity
?5. The Uniqueness Theorem of Holmgren
?Problems
?6.Distribution Solutions
?Problems
Chapter 4 The Laplace Equation
?1.Green''s Identity, Fundamental Solutions, and Poisson''s Equation
?Problems
?2.The Maximum Principle
?Problems
?3.The Dirichlet Problem, Green''s Function, and Poisson''s Formula
?Problems
?4.Proof of Existence of Solutions for the Dirichlet Problem Using Subharmonic Functions ("Perron''s Method")
?Problems
?5.Solution of the Dirichlet Problem by Hilbert-Space Methods
?Problems
Chapter 5 Hyperbolic Equations in Higher Dimensions
?1.The Wave Equation in n-Dimensional Space
?(a) The method of spherical means
?Problems
?(b) Hadamard''s method of descent
?Problems
?(c) Duhamers principle and the general Cauchy problem
?Problem
?(d) Initial-boundary-value problems ("Mixed" problems)
?Problems
?2.Higher-Order Hyperbolic Equations with Constant Coefficients
?(a) Standard form of the initial-value problem
?Problem
?(b) Solution by Fourier transformation
?Problems
?(c) Solution of a mixed problem by Fourier transformation
?(d) The method of plane waves
?Problems
?3.Symmetric Hyperbolic Systems
?(a) The basic energy inequality
?Problems
?(b) Existence of solutions by the method of finite differences
?Problems
?(c) Existence of solutions by the method of approximation by analytic functions (Method of Schauder)
Chapter 6 Higher-Order Elliptic Equations with Constant Coefficients
?1.The Fundamental Solution for Odd n
?Problems
?2. The Dirichlet Problem
?Problems
?3.More on the Hilbert Space Hg and the Assumption of Boundary Values in the Dirichlet Problem
?Problems
Chapter 7 Parabolic Equations
?1.The Heat Equation
?(a) The initial-value problem
?Problems
?(b) Maximum principle, uniqueness, and regularity
?Problem
?(c) A mixed problem
?Problems
?(d) Non-negative solutions
?Problems
?2.The Initial-Value Problem for General Second-Order Linear Parabolic Equations
?(a) The method of finite differences and the maximum principle
?(b) Existence of solutions of the initial-value problem
?Problems
Chapter 8 H.Lewy''s Example of a Linear Equation without Solutions
?Problems
Bibliography
Glossary
Index
|
|