Chapter 1Introduction
1.1History
1.2Overview
1.3Simulation Tool
Chapter 2Circuit Model
2.1Lumped Circuit
2.2Resistor and Its Circuit Model
2.2.1Resistor
2.2.2Circuit Model of Resistor
2.2.3Potentiometer and Circuit Model
2.2.4Switch and Its Circuit Model
2.2.5Generalization of Resistor Definition
2.3Power Source and Its Circuit Model
2.3.1Power Source
2.3.2Circuit Model of Power Source
2.4Inductor and Its Circuit Model
2.4.1Inductor
2.4.2Circuit Model of an Inductor
2.4.3Generalization of the Definition of Inductor
2.5Capacitor and Its Circuit Model
2.5.1Capacitor
2.5.2Capacitor Circuit Model
2.5.3Generalization of Capacitor Definition
2.6Diode and Its Circuit Model
2.6.1Diode
2.6.2Main Parameters of Diodes
2.6.3The Circuit Model of Diodes
2.6.4Zener Diode
2.6.5The Circuit Model of the Zener Diode
2.7FieldEffect Transistor (FET) and Its Circuit Model
2.7.1FieldEffect Transistor (FET)
2.7.2The Main Parameters of Enhanced FieldEffect
Transistors
2.7.3FieldEffect Transistor Circuit Model
2.8Bipolar Junction Transistor (BJT) and Its Circuit Model
2.8.1Bipolar Junction Transistor (BJT)
2.8.2Main Parameters of Transistor
2.8.3Circuit Model of Transistor
2.9Kirchhoffs Law
2.9.1Kirchhoffs Current Law
2.9.2Generalization of KCL
2.9.3Kirchhoffs Voltage Law
2.9.4Generalization of KVL
2.10Simulation Experiment
2.10.1Experimental Requirements and Purposes
2.10.2Diode VoltageCurrent Characteristic Circuit
Problems
Chapter 3Circuit Analysis Methods
3.1Two Types of Constraints and Circuit Equations
3.1.1Two Types of Constraints
3.1.2Circuit Equations
3.2The ThreeElement Method for FirstOrder Circuits
3.2.1FirstOrder RC Circuit
3.2.2Properties of Exponent
3.3Superposition Theorem and Its Application
3.3.1Superposition Theorem
3.3.2Application of Superposition Theorem
3.4Network Equivalence with the Application of Thevenins
Theorem and Nortons Theorem
3.4.1Network Equivalence
3.4.2Thevenins Theorem and Nortons Theorem
3.4.3Application of Thevenins Theorem and Nortons
Theorem
3.5Nodal Analysis Method
3.5.1Node Voltage
3.5.2Writing the Node Equation
*3.5.3Series RC Circuit with A Step Input
*3.5.4Series RC Circuit with Square Wave Input
3.6Phasor Model for Sinusoidal SteadyState Circuits
3.6.1Dynamic Circuits Driven by Sinusoidal Signals
3.6.2Sinusoidal SteadyState Circuits
3.6.3Phasor Representation of Sinusoidal Quantities
3.6.4Phasor Calculation of Sinusoidal Quantities
3.6.5Phasor Model of Sinusoidal SteadyState Circuit
3.7Phasor Analysis of Sinusoidal SteadyState Circuits
3.7.1The Fundamental Method for Phasor Analysis of Sinusoidal
SteadyState Circuits
3.7.2Application of Superposition Theorem in Sinusoidal
SteadyState Circuit Phasor Analysis
3.7.3Application of Thevenin/Norton Theorem in Phasor
Analysis of Sinusoidal SteadyState Circuits
3.7.4Node Analysis in Sinusoidal SteadyState Circuit Phasor
Analysis
3.8Frequency Characteristics of Sinusoidal SteadyState
Circuits
3.8.1Transfer Function and Frequency Characteristics of
Sinusoidal SteadyState Circuits
3.8.2FirstOrder LowPass Characteristic
3.8.3FirstOrder HighPass Characteristic
3.9Simulation: Thevenin Equivalent Circuits and Norton Equivalent
Circuits
Problems
Chapter 4Basic Amplifier Circuits
4.1Performance Indicators of Amplifiers
4.1.1Amplification and Amplifiers
4.1.2Performance Indicators of Amplifier Circuit
4.2Common Source Amplifier Circuit
4.2.1Quiescent Operation Point
4.2.2Basic Performance
4.2.3Frequency Characteristic
4.3Common Drain Amplifier Circuit
4.3.1Quiescent Working Points
4.3.2Basic Performance
4.3.3Frequency characteristics
4.4Transistor Amplifier Circuit
4.4.1Common Emitter Amplifier Circuit
4.4.2Common Collector Amplifier Circuit
4.4.3Common Base Amplifier Circuit
4.4.4Summary of Equivalent Resistance
4.5Emitter Follower Simulation Experiments
4.5.1Experimental Requirements and Objectives
4.5.2Emitter Follower Circuits
Problem
Chapter 5MultiStage Amplifier Circuits and Operational Amplifiers
5.1Coupling Methods for MultiStage Amplifier Circuits
5.1.1Direct Coupling
5.1.2ResistanceCapacitance (RC) Coupling
5.1.3Transformer Coupling
5.1.4Optoelectronic Coupling
5.2ResistanceCapacitance (RC) Coupling MultiStage Amplifier
Circuits
5.2.1Quiescent Operating Point
5.2.2Basic Performance
5.2.3Frequency Characteristic
5.3MultiStage Amplifier Circuit Simulation
5.3.1Experimental Requirements and Objectives
5.3.2Experimental Circuits
5.3.3Experimental Procedures
5.3.4Conclusion
Problem
Chapter 6Operational Amplifiers
6.1Integrated Operational Amplifiers
6.1.1Introduction to Integrated Operational Amplifiers
6.1.2Structural Characteristics of Integrated Operational
6.1.3The Composition of Integrated Operational Amplifier
Circuits and Functions
6.1.4Voltage Transfer Characteristics of Integrated Operational
Amplifier
6.2Mirror Current Source
6.2.1Transistor Mirror Current Source
6.2.2Field Effect Transistor Mirror Current Source
6.2.3MultiCurrent Source Circuit
6.2.4Active Load Common Emitter Amplifier Circuit
6.3Differential Amplifier Circuit
6.3.1LongTailed Differential Amplifier Circuit
6.3.2Current Source Differential Amplifier Circuit
6.3.3Active Load Current Source Differential Amplifier
Circuit
6.3.4MOSFET Voltage Differential Amplifier Circuit
6.4Complementary Output Circuit
6.4.1Basic Circuit
6.4.2Complementary Output Circuit for Eliminating Crossover
Distortion
6.4.3MOSFET Class AB Output Stage Circuit
6.5Integrated Operational Amplifier
6.5.1Three Stage CMOS Operational Amplifier
6.5.2Main Performance Indicators of Integrated Operational
Amplifier
6.5.3Lowfrequency Equivalent Circuit of Integrated Operational
Amplifier
Problems
Chapter 7Negative Feedback Amplifier Circuit
7.1Concept of Negative Feedback Amplifier Circuit
7.1.1Judgment of Feedback
7.1.2The Four Configurations of Negative Feedback Amplifier
Circuit
7.2Deep Negative Feedback
7.2.1Feedback Network Model and Feedback Factor
7.2.2The Voltage Gain of a Deep Negative Feedback Amplifier
Circuit
7.3The Impact of Negative Feedback on Other Performance
Aspects of the Amplifier Circuit
7.3.1Changing the Input Impedance
7.3.2Changing the Output Impedance
7.3.3Broadening the Bandwidth
7.4Negative Feedback Amplifier Circuit Simulation Experiment
7.4.1Experiment Requirements and Objectives
7.4.2Experimental Principle
7.4.3Experimental Circuit
7.4.4Experimental Procedures
7.4.5Conclusion
7.4.6Discussion of Issues
7.5Summary
Problem
Chapter 8Operational Circuits and Filtering Circuits
8.1Operational Circuits
8.1.1Circuit Components
8.1.2Addition and Subtraction Operational Circuits
8.1.3Multiplication Operation Circuit
8.1.4Integral Operational Circuit and Differential Operational
Circuit
8.2Filtering Circuits
8.3Integrated Operational Amplifier Application Simulation
Experiment
8.3.1Operational Circuit Simulation Experiment
8.3.2Active Filter Circuit Simulation Experiment
Problem
Chapter 9Waveform Generating Circuit and Signal Conversion Circuit
9.1Sinusoidal Oscillating Circuit
9.1.1RC Sinusoidal Wave Generating Circuit
9.1.2LC Sinusoidal Wave Generating Circuit
9.2NonSinusoidal Wave Generator
9.2.1Comparator Circuit
9.2.2Square Wave Generation Circuit
9.2.3Triangular Wave Generation Circuit
9.2.4Waveform Conversion CircuitTriangular Wave Sine Wave
Conversion Circuit
9.2.5Function Generator
9.3VoltagetoFrequency Conversion Circuit (VoltageControlled
Oscillator Circuit)
9.3.1Overview
9.3.2Waveform Analysis
9.4Simulation Experiment
9.4.1Experiment Requirements and Objectives
9.4.2Simulation Experiment for Sine Wave Oscillator
9.4.3Square Wave Generation Circuit
9.4.4Triangle Wave Generation Circuit
Problem
Chapter 10AC/DC Power Sources
10.1Overview
10.1.1Performance Parameters of AC/DC Power Supply
10.1.2Composition of AC/DC Power Supply
10.2Rectifier Circuits and Filter Circuits
10.2.1Rectifier Circuit
10.2.2Filter Circuit
10.3Voltage Regulator Circuit
10.4Series Regulator Circuits and ThreeTerminal Voltage
Regulators
10.4.1Basic Series Regulator Circuits
10.4.2Series Voltage Regulator Circuit with Amplification
Element
10.4.3Integrated ThreeTerminal Regulators
10.5SinglePhase Rectifier Filter Circuit Simulation Experiment
Problem
参考文献