弗兰克·摩根(Frank Morgan)是一位享誉国际的美国数学家,以其深厚的学术造诣和突破性的研究成果在数学界享有盛誉。摩根教授在哈佛大学完成了他的学士学位学习,随后在普林斯顿大学攻读硕士和博士学位,师从几何分析学家威廉·特劳布里奇(William H. Trotter)教授。目前,摩根教授担任美国威廉斯学院的数学教授,同时,他还曾在多所知名大学担任访问教授和客座教授,积累了丰富的数学教学和研究经验。他的研究兴趣广泛,聚焦于曲线和曲面的几何性质、测度论在高维空间中的创新应用,以及微分几何中的复杂变分问题。摩根教授的研究不仅深入理论层面,还积极探索其在多个领域的实际应用,展现了其跨学科的综合能力。
目錄:
Contents
Preface vii
Part I: Basic Theory 1
1Geometric Measure Theory 3
2Measures 11
3Lipschitz Functions and Recti able Sets 25
4Normal and Recti able Currents 39
5The Compactness Theorem and the Existence of Area-Minimizing Surfaces 61
6Examples of Area-Minimizing Surfaces 69
7The Approximation Theorem 79
8Survey of Regularity Results 83
9Monotonicity and Oriented Tangent Cones 89
10The Regularity of Area-Minimizing Hypersurfaces 97
11Flat Chains Moduloν, Varifolds, and -Minimal Sets 105
12Miscellaneous Useful Results 111
Part II: Applications 119
13Soap Bubble Clusters 121
14Proof of Double Bubble Conjecture 143
15The Hexagonal Honeycomb and Kelvin Conjectures 159
16Immiscible Fluids and Crystals 173
17Isoperimetric Theorems in General Codimension 179
18Manifolds with Density and Perelman’s Proof of the Poincaré Conjecture 183
19Double Bubbles in Spheres, Gauss Space, and Tori 197
20The Log-Convex Density Theorem 205
Solutions to Exercises 213
Bibliography 235
Index of Symbols 255
Name Index 257
Subject Index 259