新書推薦:

《
上海市民生活记忆
》
售價:NT$
374.0

《
分肥游戏:古代中国权力分配规则
》
售價:NT$
329.0

《
结构 Structures(埃隆马斯克推荐读物之一,经典又实用的结构力学普及读物)
》
售價:NT$
435.0

《
影响世界的十八个定律:破解万物运行规律人类,如何用公式定义世界?
》
售價:NT$
305.0

《
道教大辞典·道教百科全书(通识版本+飞机盒): 附赠32张海报:神仙谱系大全x1、道教宗派与法术全鉴x1、时间线上的道教史x1
》
售價:NT$
1520.0

《
伦理学与生活(第11版)
》
售價:NT$
551.0

《
巴格达新版 和平之城 血腥之城 汗青堂丛书055
》
售價:NT$
551.0

《
水之契约
》
售價:NT$
367.0
|
內容簡介: |
数据分析方法就是解决大数据分析与应用的重要方法,已成为自然科学和社会科学各个学科研究者必 备的知识。MATLAB是一套高性能的数值计算和可视化软件,是实现数据分析与处理的有效工具。全书共分7章,主要内容包括:MATLAB软件简介,数据处理的基本方法、回归模型、判别分析、主成分分析与典型相关分析、聚类分析、数据模拟方法、应用神经网络进行模式识别和预测。此外,每章除了习题还安排了紧密联系实际的综合性、分析性实验内容。
|
目錄:
|
前言教学建议第1章 MATLAB基础11.1 数据分析与MATLAB11.1.1 数据分析概述11.1.2 MATLAB在数据分析中的作用21.2 MATLAB基础概述31.2.1 MATLAB的影响31.2.2 MATLAB的特点与主要功能31.2.3 MATLAB主界面与常用窗口41.2.4 MATLAB的联机帮助71.2.5 工具箱及其在线帮助81.3 MATLAB基本语法101.3.1 数据类型101.3.2 操作符与运算符121.3.3 MATLAB命令函数141.4 数组和矩阵运算141.4.1 数组的创建与运算141.4.2 矩阵的输入与运算151.5 M文件与编程201.5.1 M文件编辑/调试器窗口201.5.2 M文件211.5.3 控制语句的编程221.6 MATLAB通用操作实例25习题128第2章 数据描述性分析292.1 基本统计量与数据可视化292.1.1 一维样本数据的基本统计量292.1.2 多维样本数据的统计量362.1.3 样本数据可视化392.2 数据分布及其检验452.2.1 一维数据的分布与检验452.2.2 多维数据的正态分布检验482.3 数据变换522.3.1 数据属性变换522.3.2 Box-Cox变换552.3.3 基于数据变换的综合评价模型57习题259实验1 数据统计量及其分布检验61第3章 回归分析633.1 一元回归模型633.1.1 一元线性回归模型633.1.2 一元多项式回归模型673.1.3 一元非线性回归模型693.1.4 一元回归建模实例763.2 多元线性回归模型793.2.1 多元线性回归模型及其表示793.2.2 MATLAB的回归分析命令823.2.3 多元线性回归实例893.3 逐步回归923.3.1 最优回归方程的选择923.3.2 引入变量和剔除变量的依据933.3.3 逐步回归的MATLAB实现943.4 回归诊断963.4.1 异常点与强影响点诊断963.4.2 残差分析1003.4.3 多重共线性诊断102习题3106实验2 多元线性回归与逐步回归110第4章 判别分析1114.1 距离判别分析1114.1.1 判别分析的概念1114.1.2 距离的定义1114.1.3 两个总体的距离判别分析1144.1.4 多个总体的距离判别分析1194.2 判别准则的评价1214.3 贝叶斯判别分析1244.3.1 两个总体的贝叶斯判别1244.3.2 多个总体的贝叶斯判别1284.3.3 平均误判率1304.4 K近邻判别与支持向量机135习题4141实验3 距离判别与贝叶斯判别分析145第5章 主成分分析与典型相关分析1475.1 主成分分析1475.1.1 主成分分析的基本原理1475.1.2 样本主成分分析1545.2 主成分分析的应用1585.2.1 主成分分析用于综合评价1585.2.2 主成分分析用于分类1615.2.3 主成分分析用于信号分离1635.3 典型相关分析1665.3.1 典型相关分析的基本原理1665.3.2 样本的典型变量与典型相关系数1695.3.3 典型相关系数的显著性检验1705.3.4 典型相关分析实例1725.4 趋势性与属性相关分析应用实例1775.4.1 Cox-Stuart趋势检验1775.4.2 属性数据分析178习题5180实验4 主成分分析与典型相关分析184第6章 聚类分析1876.1 距离聚类1876.1.1 聚类的思想1876.1.2 样品间的距离1886.1.3 变量间的相似系数1906.1.4 类间距离与递推公式1926.2 谱系聚类1936.2.1 谱系聚类的思想1936.2.2 谱系聚类的步骤1946.2.3 谱系聚类的MATLAB实现1966.3 K均值聚类2006.3.1 K均值聚类的思想2006.3.2 K均值聚类的步骤2006.3.3 K均值聚类的MATLAB实现2016.4 模糊均值聚类2036.4.1 模糊C均值聚类2036.4.2 模糊减法聚类2056.5 聚类的有效性2076.5.1 谱系聚类的有效性2076.5.2 K均值聚类的有效性2096.5.3 模糊聚类的有效性211习题6212实验5 聚类方法与聚类有效性215第7章 数值模拟分析2177.1 蒙特卡罗方法与应用2177.1.1 蒙特卡罗方法的基本思想2177.1.2 随机数的产生与MATLAB的伪随机数2187.1.3 蒙特卡罗方法应用实例2197.2 BP神经网络及应用2277.2.1 人工神经元及人工神经元网络2277.2.2 BP神经网络2287.2.3 MATLAB神经网络工具箱2307.2.4 BP神经网络应用实例232习题7239实验6 数值模拟240参考文献241
|
|