目录
优质篇复变函数论
第1章复变函数与解析函数
1.1复数及其基本运算(complex numbers and operations)
1.1.1复数的基本概念(concepts of complex numbers)
1.1.2复数的表示方法(algebraic and geometric structure of complex numbers)
1.1.3复数的基本运算(operation of complex numbers)
1.1.4基于MATLAB的复数运算(complex number operations based on MATLAB)
1.2复变函数(complex variable functions)
1.2.1复变函数的概念(concepts and properties of complex variable function)
1.2.2区域的相关概念(concepts of domain)
1.2.3复变函数的极限和连续(limit and continuity of complex variable function)
1.3导数及解析函数(derivative and analytic function)
1.3.1导数(derivative)
1.3.2函数可导的充分必要条件(sufficient conditions for derivability)
1.3.3解析函数(analytic function)
1.3.4初等解析函数及性质(elementary analytic function and properties)
1.3.5运用MATLAB工具使复变函数可视化(visualization of complex function
based on MATLAB)
1.4解析函数的应用(application of analytic function)
1.4.1解析函数在平面静电场中的应用(application of analytic function in the
plane electrostatic field)
1.4.2保角变换及其几何解释(conformal mapping and its geometric interpretations)
1.4.3解析函数在系统稳态响应问题求解中的应用(application of analytic
function in oscillation system)
第1章习题
第2章解析函数积分
2.1复变函数的积分(integral of complex variable function)
2.1.1复变函数积分的基本概念(concepts of complex integral)
2.1.2复变函数积分的性质(properties of complex integral)
2.1.3复变函数积分实例(examples of complex integral)
2.2柯西定理(Cauchy theorem)
2.2.1单连通区域情形的柯西定理(Cauchy theorem in simply connected domains)
2.2.2不定积分和原函数(indefinite integral and antiderivative)
2.2.3复连通区域的柯西定理(Cauchy theorem in multiply connected domains)
2.2.4复变函数积分的MATLAB运算(calculation of complex integral
based on MATLAB)
2.3柯西公式及推论(Cauchy formula and extension)
2.3.1单连通区域的柯西积分公式(Cauchy formula in simply connected domain)
2.3.2复连通区域的柯西积分公式(Cauchy formula in multiply connected domain)
2.3.3无界区域中的柯西积分公式(Cauchy formula for unbounded domain)
2.3.4柯西公式推论(extension of Cauchy formula)
2.4柯西定理及柯西公式应用实例(application examples of Cauchy theorem
and Cauchy formula)
第2章习题
第3章复变函数级数
3.1复数项级数(complex number series)
3.1.1复数项级数的概念(concepts of complex number series)
3.1.2复数项级数的性质(properties of complex number series)
3.1.3复变函数项级数(series of complex functions)
3.2幂级数(power series)
3.2.1幂级数概念(concepts of power series)
3.2.2收敛半径与收敛圆(radius of convergence and circle of convergence)
3.2.3幂级数的性质(properties of power series)
3.3泰勒级数(Taylor series)
3.3.1解析函数的泰勒展开式(Taylor expansion of analytic function)
3.3.2泰勒级数的收敛半径(radius of convergence of Taylor series)
3.3.3将函数展开成泰勒级数的实例(examples of Taylor series expansion)
3.4洛朗级数(Laurent series)
3.4.1洛朗级数定义(definition of Laurent series)
3.4.2洛朗级数的收敛性(convergence of Laurent series)
3.4.3洛朗级数展开实例(examples of Laurent series expansion)
3.5单值函数的孤立奇点(isolated singular points of singlevalued functions)
3.6基于MATLAB的幂级数展开(power series expansion based on MATLAB)
第3章习题
第4章留数定理及其应用
4.1留数定理(residue theorem)
4.1.1闭合回路积分与留数的关系(loop integral and residue)
4.1.2留数的计算(calculation of residue)
4.1.3基于MATLAB的留数计算(residue calculation based on MATLAB)
4.2利用留数定理计算实积分(application of residue theorem for calculation of real integral)
4.2.1类型Ⅰ实积分计算(type Ⅰ real integral)
4.2.2类型Ⅱ实积分计算(type Ⅱ real integral)
4.2.3类型Ⅲ实积分计算(type Ⅲ real integral)
4.3其他类型的实积分计算(calculation of other real integral)
4.4基于MATLAB的回路积分计算(loop integral calculation based on MATLAB)
第4章习题
第二篇数学物理方程及求解方法
第5章傅里叶级数
5.1周期函数的傅里叶展开(Fourier expansion of periodic function)
5.1.1傅里叶级数的定义(definition of Fourier series)
5.1.2傅里叶级数的实际意义(practical meaning of Fourier series)
5.1.3傅里叶级数的收敛性(convergence of Fourier series)
5.2奇函数及偶函数的傅里叶展开(Fourier expansion of odd and even function)
5.3定义在有界区间上函数的傅里叶展开(Fourier expansion of functions
defined on an interval)
5.4复数形式的傅里叶级数(Fourier series in complex form)
5.5使用MATLAB完成傅里叶级数的可视化(visualization of Fourier series based
on MATLAB)
第5章习题
第6章数学建模——数学物理定解问题
6.1基本概念(basic concepts)
6.2典型的数理方程(typical mathematical physics equation)
6.2.1波动方程(wave equation)
6.2.2热传导方程(heatconduction equation)
6.2.3泊松方程(Poisson equation)
6.3定解条件(definite solution condition)
6.3.1初始条件(initial condition)
6.3.2边界条件(boundary condition)
6.3.3数学物理定解问题的适定性(wellposed problems in mathematical physics)
6.4二阶线性偏微分方程的分类和特征(classification and characteristics of
secondorder linear partial differential equations)
6.4.1二阶线性偏微分方程的分类(classification of secondorder linear
partial differential equations)
6.4.2二阶线性偏微分方程解的特征(characteristics of solutions of secondorder
linear partial differential equations)
6.5行波法与达朗贝尔公式(traveling wave method and DAlembert formula)
6.5.1一维波动方程的达朗贝尔公式(DAlembert formula for one
dimensional wave equation)
6.5.2达朗贝尔公式的物理意义(physical meaning of DAlembert formula)
6.5.3达朗贝尔公式应用的MATLAB实现(application of DAlembert
formula based on MATLAB)
第6章习题
第7章分离变量法
7.1分离变量法的理论(theory of variable separation)
7.1.1分离变量法简介(introduction of variable separation method)
7.1.2偏微分方程可实施变量分离的条件(conditions for variable
separation of PDEs)
7.1.3边界条件可实施变量分离的条件(conditions for variable separation
of boundary conditions)
7.2直角坐标系中的分离变量法(variable separation method in rectangular
coordinate