《Ordinary Differential Equations:Theory, Methods and Applications(常微分方程:理论、方法与应用)》介绍常微分方程的基本理论、方法及相关应用。《Ordinary Differential Equations:Theory, Methods and Applications(常微分方程:理论、方法与应用)》共7章,包括存在性、唯一性与稳定性等理论,求解一阶或高阶微分方程(组)的分离变量法、积分因子法、特征值法、常数变易法、拉普拉斯变换法、幂级数法和数值方法等方法,以及其在人口、生物、金融、物理、气象等不同领域中的应用。《Ordinary Differential Equations:Theory, Methods and Applications(常微分方程:理论、方法与应用)》在编排上以实际问题的解决为牵引、以各类方程的求解为驱动、以具体方法的介绍为重点,在叙述上注重启发性和系统性,在应用上注重与MATLAB等现代数学软件的使用相结合。《Ordinary Differential Equations:Theory, Methods and Applications(常微分方程:理论、方法与应用)》主要使用英语进行编写,章节的标题以及一些重点词汇用中、英文双语进行表述。
目錄:
Contents
Preface
Chapter 1 Introduction引言 1
1.1 Differential Equation Models微分方程模型 1
1.2 General Concepts and Definitions基本概念与定义 6
1.2.1 Classification of Differential Equations微分方程的分类 6
1.2.2 Concepts of Solutions解的概念 8
1.3 Slope Fields and Solution Curves斜率场与解*线 13
1.3.1 The Geometry of dy/dx=f(x,y) dy/dx=f(x,y)的几何意义 13
1.3.2 Slope Fields斜率场 14
1.3.3 Construct Slope Fields by Using dfield绘制斜率场图 15
Chapter 2 First-order Differential Equation一阶微分方程 19
2.1 The Method of Separation of Variables分离变量法 19
2.1.1 Motivation: Solution by Integration动机:直接积分求解 20
2.1.2 Separable Equations变量可分离方程 20
2.1.3 How to Solve 求解方法 20
2.1.4 Separable Equations in Differential Form微分形式的变量可分离方程 23
2.1.5 Application: Population Dynamics应用:人口动力学 25
2.2 Method of Transformation of Variables变量代换方法 31
2.2.1 Homogeneous Polar Equation齐次极性方程 31
2.2.2 Equations That Can Be Transformed into Homogeneous Polar Equations可化为齐次极性方程的方程 32
2.2.3 Other Transformations其他变换 36
2.3 First-order Linear Equations一阶线性方程 40
2.3.1 Homogeneous Equations齐次方程 41
2.3.2 Nonhomogeneous Equations非齐次方程 41
2.3.3 Bernoulli Differential Equations伯努利方程 46
2.3.4 Application: Electrical Circuit应用:电子电路 50
2.4 Exact Differential Equations and Integrating Factors全微分方程 (恰当微分方程) 与积分因子 56
2.4.1 Exact Differential Equations恰当微分方程 57
2.4.2 Integrating Factors积分因子 61
2.4.3 Method of Inspection观察法 63
2.5 First-order Implicit Differential Equations一阶隐式方程 66
2.5.1 y′ Can Be Solved可以解出y′的方程 66
2.5.2 x or y Is Missing (Parametric Method)不显含x或y的方程 (参数法) 67
2.5.3 x or y Can Be Solved可以解出x或y的方程 69
Chapter 3 Fundamental Theorems of Ordinary Differential Equations常微分方程基本定理 74
3.1 The Existence-uniqueness Theorem存在唯一性定理 74
3.1.1 Motivation: Picard’s Iteration Method动机:皮卡迭代方法 75
3.1.2 Theorem of Existence-uniqueness of Solutions存在唯一性定理 78
3.1.3 The Proof of Existence存在性的证明 80
3.1.4 The Proof of Uniqueness唯一性的证明 82
3.1.5 Some Applications of Theorem 3.1.1定理3.1.1的应用举例 83
3.2 Extension of Solutions解的延拓 87
3.2.1 Definition of Extension延拓的定义 87
3.2.2 Theorem of Extension延拓定理 88
3.2.3 Some Applications of the Theorem of Extension延拓定理的应用 89
3.2.4 The Comparison Theorems 比较定理 91
3.3 Dependence and Differentiability of Solutions on Initial Conditions 解对初始条件的依赖性与可微性 93
3.3.1 Motivation:Dependence of Solutions动机:解的依赖性 93
3.3.2 Continuous Dependence of Solutions on Initial Values解对初值连续依赖性 93
3.3.3 Further Generalization进一步推广 95
3.4 Singular Solutions and Envelopes奇解与包络 97
3.4.1 Singular Solutions奇解 98
3.4.2 Envelopes and the Methods of Finding Singular Solutions包络及奇解的求法 101
Chapter 4 Higher Order Differential Equation高阶微分方程 106
4.1 General Theory of High-order Linear Equations高阶线性方程的一般理论 106
4.1.1 General concepts基本概念 106
4.1.2 Existence-uniqueness for Linear Equations线性方程的存在唯一性 108
4.1.3 Linear Dependence and Independence线性相关与线性无关 108
4.1.4 General Solutions of Homogeneous Equation齐次方程的通解 110
4.1.5 General Solution of Nonhomogeneous Equation非齐次方程的通解 111
4.1.6 Liouville’s Formula刘维尔公式 112
4.2 Homogeneous Equations with Constant Coefficients常系数齐次方程 115
4.2.1 Distinct Real Roots不同的实根 115
4.2.2 Distinct Complex Roots不同的复根 118
4.2.3 Repeated Real Roots重复的实根 120
4.2.4 Repeated Complex Roots重复的复根 123
4.3 Nonhomogeneous Equations with Constant Coefficients常系数非齐次方程 126
4.3.1 Method of Undetermined Coefficients待定系数法 127
4.3.2 Proof of the Method of Undetermined Coefficients待定系数法的证明 137
4.4 Nonhomogeneous Equations and Variation of Parameters非齐次方程与常数变易法 141
4.4.1 Variation of Parameters常数变易法 141
4.4.2 Examples例题 143
4.4.3 Initial Value Green’s Functions初值Green函数 145
4.4.4 Boundary Value Green’s Functions边值Green函数 146
4.5 High-order Differential Equations That Can Be Reduced可降阶的高阶微分方程 148
4.5.1 Equations Immediately Integrable可积方程 149
4.5.2 The Dependent Variable Absent不含未知函数的方程 149
4.5.3 The Independent Variable Absent不含自变量的方程 151
4.5.4 Exact Derivation Equation恰当导数方程 152
4.6 Application: Mechanical Vibrations应用:机械振动 153
4.6.1 Undamped Free Vibrations无阻尼自由振动 155
4.6.2 Damped Free Vibrations阻尼自由振动 157
4.6.3 Undamped Forced Vibrations无阻尼受迫振动 158
4.6.4 Damped Forced Vibrations阻尼受迫振动 159
Chapter 5 Linear Systems of Differential Equations线性微分方程组 161
5.1 First-order Systems一阶方程组 161
5.1.1 Introduction引入 161
5.1.2 Transformation Between Higher Order Equations and First-Order Systems高阶方程和一阶方程组间的转换 162
5.1.3 Linear Systems线性方程组 164
5.1.4 The Method of Elimination消去法 165
5.2 Review of Matrices and Linear Algebraic Systems复习:矩阵和线性代数方程组 167
5.2.1 Matrix-valued Functions矩阵值函数 167
5.2.2 Systems of Linear Algebraic Equations线性代数方程组 168
5.2.3 Linear Independence线性无关 169
5.2.4 Eigenvalues and Eigenvectors特征值与特征向量 171
5.3 Basic Theory of Systems of First-order Linear Equations一阶线性方程组的基本理论 173
5.3.1 First-order Linear Systems一阶线性方程组 173
5.3